Utilizando a regra de Cramer, determine o valor da incógnita y no seguinte sistema de equações lineares:?
2x+3y+3z=18
3x+2y+5z=23
5x+4y+2z=27
Soluções para a tarefa
Respondido por
56
Oi
Calculando o Determinante da matriz principal (retirando as variáveis x,y,z):
![D= \left[\begin{array}{ccc}2&3&3\\3&2&5\\5&4&2\end{array}\right] \\ \\ D=(2.2.2)+(3.5.5)+(3.3.4)-[(3.2.5)+(5.4.2)+(2.3.3)] \\ \\ D=8+75+36-[30+40+18] \\ \\ D=119-81 \\ \\ D=31 D= \left[\begin{array}{ccc}2&3&3\\3&2&5\\5&4&2\end{array}\right] \\ \\ D=(2.2.2)+(3.5.5)+(3.3.4)-[(3.2.5)+(5.4.2)+(2.3.3)] \\ \\ D=8+75+36-[30+40+18] \\ \\ D=119-81 \\ \\ D=31](https://tex.z-dn.net/?f=+D%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B3%26amp%3B3%5C%5C3%26amp%3B2%26amp%3B5%5C%5C5%26amp%3B4%26amp%3B2%5Cend%7Barray%7D%5Cright%5D++%5C%5C++%5C%5C+D%3D%282.2.2%29%2B%283.5.5%29%2B%283.3.4%29-%5B%283.2.5%29%2B%285.4.2%29%2B%282.3.3%29%5D+%5C%5C++%5C%5C+D%3D8%2B75%2B36-%5B30%2B40%2B18%5D+%5C%5C++%5C%5C+D%3D119-81+%5C%5C++%5C%5C+D%3D31)
------------------------------------------------------------------------------------------
Calculando Dx :
![D_x= \left[\begin{array}{ccc}18&3&3\\23&2&5\\27&4&2\end{array}\right] \\ \\ D_x=(18.2.2)+(3.5.27)+(3.23.4)-[(3.2.27)+(5.4.18)+(2.3.23)] \\ \\ D_x=72+405+276-[162+360+138] \\ \\ D_x=753-660 \\ \\ \boxed{D_x=93} D_x= \left[\begin{array}{ccc}18&3&3\\23&2&5\\27&4&2\end{array}\right] \\ \\ D_x=(18.2.2)+(3.5.27)+(3.23.4)-[(3.2.27)+(5.4.18)+(2.3.23)] \\ \\ D_x=72+405+276-[162+360+138] \\ \\ D_x=753-660 \\ \\ \boxed{D_x=93}](https://tex.z-dn.net/?f=D_x%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D18%26amp%3B3%26amp%3B3%5C%5C23%26amp%3B2%26amp%3B5%5C%5C27%26amp%3B4%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+D_x%3D%2818.2.2%29%2B%283.5.27%29%2B%283.23.4%29-%5B%283.2.27%29%2B%285.4.18%29%2B%282.3.23%29%5D+%5C%5C+%5C%5C+D_x%3D72%2B405%2B276-%5B162%2B360%2B138%5D+%5C%5C+%5C%5C+D_x%3D753-660+%5C%5C++%5C%5C+%5Cboxed%7BD_x%3D93%7D+)
--------------------------------------------------------------------------------------------
Calculando Dy:
![D_y= \left[\begin{array}{ccc}2&18&3\\3&23&5\\5&27&2\end{array}\right] \\ \\ D_y=(2.23.2)+(18.5.5)+(3.3.27)-[(3.23.5)+(5.27.2)+(2.3.18)] \\ \\ D_y=92+450+243-[345+270+108] \\ \\ D_y=785-723 \\ \\ \boxed{D_y=62} D_y= \left[\begin{array}{ccc}2&18&3\\3&23&5\\5&27&2\end{array}\right] \\ \\ D_y=(2.23.2)+(18.5.5)+(3.3.27)-[(3.23.5)+(5.27.2)+(2.3.18)] \\ \\ D_y=92+450+243-[345+270+108] \\ \\ D_y=785-723 \\ \\ \boxed{D_y=62}](https://tex.z-dn.net/?f=D_y%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B18%26amp%3B3%5C%5C3%26amp%3B23%26amp%3B5%5C%5C5%26amp%3B27%26amp%3B2%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+D_y%3D%282.23.2%29%2B%2818.5.5%29%2B%283.3.27%29-%5B%283.23.5%29%2B%285.27.2%29%2B%282.3.18%29%5D+%5C%5C+%5C%5C+D_y%3D92%2B450%2B243-%5B345%2B270%2B108%5D+%5C%5C+%5C%5C+D_y%3D785-723+%5C%5C+%5C%5C+%5Cboxed%7BD_y%3D62%7D+)
----------------------------------------------------------------------------------------------------------
Calculando Dz:
![D_z= \left[\begin{array}{ccc}2&3&18\\3&2&23\\5&4&27\end{array}\right] \\ \\ D_z=(2.2.27)+(3.23.5)+(18.3.4)-[(18.2.5)+(23.4.2)+(27.3.3)] \\ \\ D_z=108+345+216-[180+184+243] \\ \\ D_z=669-607 \\ \\ \boxed{D_z=62} D_z= \left[\begin{array}{ccc}2&3&18\\3&2&23\\5&4&27\end{array}\right] \\ \\ D_z=(2.2.27)+(3.23.5)+(18.3.4)-[(18.2.5)+(23.4.2)+(27.3.3)] \\ \\ D_z=108+345+216-[180+184+243] \\ \\ D_z=669-607 \\ \\ \boxed{D_z=62}](https://tex.z-dn.net/?f=D_z%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26amp%3B3%26amp%3B18%5C%5C3%26amp%3B2%26amp%3B23%5C%5C5%26amp%3B4%26amp%3B27%5Cend%7Barray%7D%5Cright%5D+%5C%5C+%5C%5C+D_z%3D%282.2.27%29%2B%283.23.5%29%2B%2818.3.4%29-%5B%2818.2.5%29%2B%2823.4.2%29%2B%2827.3.3%29%5D+%5C%5C+%5C%5C+D_z%3D108%2B345%2B216-%5B180%2B184%2B243%5D+%5C%5C+%5C%5C+D_z%3D669-607+%5C%5C+%5C%5C+%5Cboxed%7BD_z%3D62%7D+)
-----------------------------------------------------------------------------------------------------
Encontrado os determinantes . Agora é só encontrar o valor dos coeficientes:
![x= \frac{D_x}{D} = \frac{93}{31} =3 \\ \\ y= \frac{D_y}{D} = \frac{62}{31} =2 \\ \\ z= \frac{D_z}{D} = \frac{62}{31} =2 x= \frac{D_x}{D} = \frac{93}{31} =3 \\ \\ y= \frac{D_y}{D} = \frac{62}{31} =2 \\ \\ z= \frac{D_z}{D} = \frac{62}{31} =2](https://tex.z-dn.net/?f=x%3D+%5Cfrac%7BD_x%7D%7BD%7D+%3D++%5Cfrac%7B93%7D%7B31%7D+%3D3+%5C%5C++%5C%5C++y%3D+%5Cfrac%7BD_y%7D%7BD%7D+%3D++%5Cfrac%7B62%7D%7B31%7D+%3D2+%5C%5C++%5C%5C+z%3D+%5Cfrac%7BD_z%7D%7BD%7D+%3D++%5Cfrac%7B62%7D%7B31%7D+%3D2)
--------------------------------------------------------------------------------------------------------
Portanto:
x=3 , y=2 , z=2
Espero que goste. Comenta Depois :)
Calculando o Determinante da matriz principal (retirando as variáveis x,y,z):
------------------------------------------------------------------------------------------
Calculando Dx :
--------------------------------------------------------------------------------------------
Calculando Dy:
----------------------------------------------------------------------------------------------------------
Calculando Dz:
-----------------------------------------------------------------------------------------------------
Encontrado os determinantes . Agora é só encontrar o valor dos coeficientes:
--------------------------------------------------------------------------------------------------------
Portanto:
x=3 , y=2 , z=2
Espero que goste. Comenta Depois :)
Perguntas interessantes
História,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás