Matemática, perguntado por lianalyah, 11 meses atrás

Utilizando a lei dos senos, determine o valor de x no triângulo abaixo​

Anexos:

Soluções para a tarefa

Respondido por gabrielhfdias
1

Resposta:

2\sqrt{3}

Explicação passo-a-passo:

aplicando a lei dos senos:

\frac{x}{sen30}=\frac{6}{sen45}

\frac{x}{\frac{1}{2} }=\frac{6}{\frac{\sqrt{3} }{2} }

\frac{\sqrt{3} }{2}x=\frac{6}{2}

x=\frac{12}{2\sqrt{3} }

x=\frac{6}{\sqrt{3} }

x=\frac{6}{\sqrt{3} }\frac{\sqrt{3} }{\sqrt{3} }

x=\frac{6\sqrt{3} }{3}

x=2\sqrt{3}

Perguntas interessantes