Matemática, perguntado por RenanVieira13, 11 meses atrás

Use propriedades dos radicais para achar um valor aproximado de:

 \sqrt{12}  +  \sqrt{32}  =
 \sqrt{20}  +  \sqrt{27}  =

Soluções para a tarefa

Respondido por dougOcara
1

Resposta:

Considerando:

\sqrt{2} \approx1,41\\\sqrt{3} \approx1,73\\\sqrt{5} \approx2,24\\

1)  \sqrt{12} + \sqrt{32} =

Fatore:

12 | 2

6 | 2

3 | 3

1  | 1  /

= 2².3 = 12

32 | 2

16 | 2

8 | 2

4 | 2

2 | 2

1 | 1  /=2^{5}

\sqrt{12} + \sqrt{32} = \sqrt{2^{2}.3}+\sqrt{2^{5}}=2^{\frac{2}{2}}.3^{\frac{1}{2} }+2^{\frac{5}{2}}=2.3^{\frac{1}{2} }+2^{\frac{4}{2}}.2^{\frac{1}{2}}=2\sqrt{3}+2^{2}.\sqrt{2}=2\sqrt{3}+4\sqrt{2}\approx 2.(1,73)+4.(1,41)\approx3,46+5,64\approx 9,06

2)  \sqrt{20} + \sqrt{27} =

​Fatore:

20 | 2

10 | 2

5 | 5

1 | 1

/=2².5

27 | 3

9 | 3

3 | 3

1 | 1/=3^{3}=3^{2}.3

\sqrt{20} + \sqrt{27} =\sqrt{2^{2}.5} +\sqrt{3^{2}.3^{1}} =2\sqrt{5} +3\sqrt{3} \Rightarrow\\2\sqrt{5} +3\sqrt{3}\approx 2.(2,24)+3.(1,73)\approx9,67

0-0-0-0-0-0-0-0-0-0-0-0-0

Propriedades:

(a^{m})^{n}=a^{m.n}\\\\\sqrt[n]{x^m} =x^{\frac{m}{n} }\\\\a^{m}a^{n}=a^{m+n}\\\\\frac{a^{m}}{a^{n}}=a^{m-n} \\\\a^{0}=1\\\\a^{1}=a\\

Perguntas interessantes