Matemática, perguntado por jongatinho, 11 meses atrás

Use logaritmos para resolver a equação 4et-1 = 4 e assinale a alternativa que apresenta a resposta correta:


a) 1.


b) 2.


c) 0.


d) 4.


e) - 1.

Soluções para a tarefa

Respondido por Ruiber0
8

Resposta:

a) 1

Explicação passo-a-passo:

Dada a expressão:

4e^{t-1} = 4

cancelamos o 4:

e^{t-1}=1

Aplicamos o logaritmo natural em ambos os lados:

\ln({e^{t-1}})=\ln({1})

Do lado direito, sabemos que

\ln(1)=0

Do lado esquerdo, basta lembrar de dois fatos:

1. \ln(a^b)=b\ln(a)

2. \ln(e)=1

Sendo assim, o lado esquerdo, fica:

\ln(e^{t-1})=(t-1)\ln(e) = t-1

Juntando o lado esquerdo e o lado direito:

t-1=0\\

LOGO

t = 1

Perguntas interessantes