Matemática, perguntado por massatogame2, 5 meses atrás

Use a transformada de Laplace para resolver o P.V.I. proposto:
y" - y' - 6y = 0;
y(0) = 1
y'(0) = -1

Soluções para a tarefa

Respondido por Skoy
13
  • O resultado desse problema de valor inicial é igual a:

             \Large\displaystyle\text{$\begin{gathered}y=\frac{4e^{-2t}+e^{3t}}{5}\end{gathered}$}

Para resolver um PVI através da transformada de Laplace, devemos aplicar a transformada de Laplace em ambos os lados da equação diferencial. Ficando então:

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\left\{y''\right\} - \mathcal{L}\left\{ y'\right\} - \mathcal{L}\left\{6y\right\} = \mathcal{L}\left\{0  \right\}\end{gathered}$}

Pela lineariedade, temos que

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\left\{y''\right\} - \mathcal{L}\left\{ y'\right\} - 6\mathcal{L}\left\{y\right\} = \mathcal{L}\left\{0  \right\}\end{gathered}$}

Agora, vale ressaltar as seguintes propriedades da transformada de Laplace:

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\left\{\frac{d^2}{dt^2} (y)\right\}= s^2\cdot \mathcal{L}\left\{ y \right\}-s\cdot y(0)-y'(0)\ \ \red{ (I)}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\left\{\frac{d}{dt} (y)\right\}= s\cdot\mathcal{L}\left\{ y \right\}-y(0)\ \ \ \red{ (II)}\end{gathered}$}

Sabendo disso, logo:

\Large\displaystyle\text{$\begin{gathered} \left[s^2\mathcal{L}\{y\}-sy(0)-y'(0)\right]- \left[ s\mathcal{L}\{y\}-y(0)\right]- 6\mathcal{L}\left\{y\right\} =0\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \left[s^2\mathcal{L}\{y\}-s+1\right]- \left[ s\mathcal{L}\{y\}-1\right]- 6\mathcal{L}\left\{y\right\} =0\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\{y\}\cdot \left[s^2 -s-6 \right] =s-2\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \mathcal{L}\{y\}=\frac{s-2}{s^2 -s-6 }\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\boxed{y=\mathcal{L}^{-1}\left\{\frac{s-2}{s^2 -s-6 }\right\}}\ \ \red{(III)}\end{gathered}$}

Feito isso, vamos agora abrir em frações parciais, ficando então:

\Large\displaystyle\text{$\begin{gathered}y=\mathcal{L}^{-1}\left\{\frac{s-2}{\left(s+2\right)\left(s-3\right)}\right\}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\frac{s-2}{\left(s+2\right)\left(s-3\right)}=\frac{A}{(s+2)}+\frac{B}{(s-3)}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\frac{s-2}{\left(s+2\right)\left(s-3\right)}=\frac{A(s-3)+B(s+2)}{(s+2)(s-3)}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}A(s-3)+B(s+2)=  s-2\end{gathered}$}

  • Adotando s como -2, temos que:

\Large\displaystyle\text{$\begin{gathered}-5A=  -4\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\therefore \blue{\boxed{A=  \frac{4}{5}} }\end{gathered}$}

  • Adotando s como 3, temos que:

\Large\displaystyle\text{$\begin{gathered}5B=  1\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\therefore \blue{\boxed{B=  \frac{1}{5}}}\end{gathered}$}

Vamos agora substituir na transformada inversa, ficando então:

\Large\displaystyle\text{$\begin{gathered}\frac{s-2}{\left(s+2\right)\left(s-3\right)}=\frac{4}{5(s+2)}+\frac{1}{5(s-3)}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}y=\mathcal{L}^{-1}\left\{\frac{4}{5(s+2)}+\frac{1}{5(s-3)} \right\}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}y=\frac{4}{5}\cdot \mathcal{L}^{-1}\left\{\frac{1}{s+2} \right\}+\frac{1}{5}\cdot \mathcal{L}^{-1}\left\{\frac{1}{s-3} \right\}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}y=\frac{4}{5}\cdot e^{-2t}+\frac{1}{5}\cdot e^{3t}\end{gathered}$}

\Large\displaystyle\text{$\begin{gathered}\green{\underline{\boxed{\boxed{y=\frac{4e^{-2t}+e^{3t}}{5}}}}}\ \ (\checkmark )\end{gathered}$}

Veja mais sobre:

  • brainly.com.br/tarefa/50514992
Anexos:
Perguntas interessantes