Use a integral dupla para achar a área das seguintes questões:
8) Calcule a área da região delimitada pela parábola y= 4-x² e pela reta x - y=2.
9) Calcule a área da região delimitada pela parábola x = y² - 4 e pela reta x = 3y.
10) Achar a área da região delimitada pelos gráficos das equações y = x³, y = 2 -x² e x=0.
Ver anexo
Anexos:
![](https://pt-static.z-dn.net/files/dcf/3eec169cd6ce9f39a6d3ec2f39df9580.jpg)
Soluções para a tarefa
Respondido por
3
8) • Achando a interseção entre as curvas
y = 4 – x² e y = x – 2
4 – x² = x – 2
0 = x – 2 – 4 + x²
x² + x – 6 = 0
x² + 3x – 2x – 6 = 0
x(x + 3) – 2(x + 3) = 0
(x + 3)(x – 2) = 0
x = – 3 ou x = 2
Pontos (– 3, –5) e (2, 0).
• Extremos de integração:
x varia em extremos fixos: – 3 ≤ x ≤ 2;
y varia entre duas funções de x: x – 2 ≤ y ≤ 4 – x².
A área é dada por
![A=\displaystyle\iint_D 1\,dA\\\\\\ =\int_{-3}^2\int_{x-2}^{4-x^2}1\,dy\,dx\\\\\\ =\int_{-3}^2 y\big|_{x-2}^{4-x^2}\,dx\\\\\\ =\int_{-3}^2 \big(4-x^2-(x-2)\big)\,dx\\\\\\ =\int_{-3}^2 (4-x^2-x+2)\,dx\\\\\\ =\int_{-3}^2 (6-x-x^2)\,dx\\\\\\ =\left(6x-\frac{x^2}{2}-\frac{x^3}{3}\right)\bigg|_{-3}^2\\\\\\ =\left(6\cdot 2-\frac{2^2}{2}-\frac{2^3}{3}\right)-\left(6\cdot (-3)-\frac{(-3)^2}{2}-\frac{(-3)^3}{3}\right)\\\\\\ =12-2-\frac{8}{3}-\left(-18-\frac{9}{2}+\frac{27}{3}\right) A=\displaystyle\iint_D 1\,dA\\\\\\ =\int_{-3}^2\int_{x-2}^{4-x^2}1\,dy\,dx\\\\\\ =\int_{-3}^2 y\big|_{x-2}^{4-x^2}\,dx\\\\\\ =\int_{-3}^2 \big(4-x^2-(x-2)\big)\,dx\\\\\\ =\int_{-3}^2 (4-x^2-x+2)\,dx\\\\\\ =\int_{-3}^2 (6-x-x^2)\,dx\\\\\\ =\left(6x-\frac{x^2}{2}-\frac{x^3}{3}\right)\bigg|_{-3}^2\\\\\\ =\left(6\cdot 2-\frac{2^2}{2}-\frac{2^3}{3}\right)-\left(6\cdot (-3)-\frac{(-3)^2}{2}-\frac{(-3)^3}{3}\right)\\\\\\ =12-2-\frac{8}{3}-\left(-18-\frac{9}{2}+\frac{27}{3}\right)](https://tex.z-dn.net/?f=A%3D%5Cdisplaystyle%5Ciint_D+1%5C%2CdA%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-3%7D%5E2%5Cint_%7Bx-2%7D%5E%7B4-x%5E2%7D1%5C%2Cdy%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-3%7D%5E2+y%5Cbig%7C_%7Bx-2%7D%5E%7B4-x%5E2%7D%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-3%7D%5E2+%5Cbig%284-x%5E2-%28x-2%29%5Cbig%29%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-3%7D%5E2+%284-x%5E2-x%2B2%29%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-3%7D%5E2+%286-x-x%5E2%29%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cleft%286x-%5Cfrac%7Bx%5E2%7D%7B2%7D-%5Cfrac%7Bx%5E3%7D%7B3%7D%5Cright%29%5Cbigg%7C_%7B-3%7D%5E2%5C%5C%5C%5C%5C%5C+%3D%5Cleft%286%5Ccdot+2-%5Cfrac%7B2%5E2%7D%7B2%7D-%5Cfrac%7B2%5E3%7D%7B3%7D%5Cright%29-%5Cleft%286%5Ccdot+%28-3%29-%5Cfrac%7B%28-3%29%5E2%7D%7B2%7D-%5Cfrac%7B%28-3%29%5E3%7D%7B3%7D%5Cright%29%5C%5C%5C%5C%5C%5C+%3D12-2-%5Cfrac%7B8%7D%7B3%7D-%5Cleft%28-18-%5Cfrac%7B9%7D%7B2%7D%2B%5Cfrac%7B27%7D%7B3%7D%5Cright%29)
![=12-2-\dfrac{8}{3}+18+\dfrac{9}{2}-\dfrac{27}{3}\\\\\\ =28-\dfrac{35}{3}+\dfrac{9}{2}\\\\\\ =\dfrac{168-70+27}{6}\\\\\\ =\boxed{\begin{array}{c}\dfrac{125}{6}\mathrm{~u.a.} \end{array}}~~~~\checkmark =12-2-\dfrac{8}{3}+18+\dfrac{9}{2}-\dfrac{27}{3}\\\\\\ =28-\dfrac{35}{3}+\dfrac{9}{2}\\\\\\ =\dfrac{168-70+27}{6}\\\\\\ =\boxed{\begin{array}{c}\dfrac{125}{6}\mathrm{~u.a.} \end{array}}~~~~\checkmark](https://tex.z-dn.net/?f=%3D12-2-%5Cdfrac%7B8%7D%7B3%7D%2B18%2B%5Cdfrac%7B9%7D%7B2%7D-%5Cdfrac%7B27%7D%7B3%7D%5C%5C%5C%5C%5C%5C+%3D28-%5Cdfrac%7B35%7D%7B3%7D%2B%5Cdfrac%7B9%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%3D%5Cdfrac%7B168-70%2B27%7D%7B6%7D%5C%5C%5C%5C%5C%5C+%3D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cdfrac%7B125%7D%7B6%7D%5Cmathrm%7B%7Eu.a.%7D+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%5Ccheckmark)
_________
9) • Achando a interseção entre as curvas
x = y² – 4 e x = 3y
y² – 4 = 3y
y² – 3y – 4 = 0
y² + y – 4y – 4 = 0
y(y + 1) – 4(y + 1) = 0
(y + 1)(y – 4) = 0
y = – 1 ou y = 4
Pontos (– 3, – 1) e (4, 12).
• Extremos de integração:
– 1 ≤ y ≤ 3;
y² – 4 ≤ x ≤ 3y.
• Área:
![A=\displaystyle\int_{-1}^4\int_{y^2-4}^{3y} 1\,dx\,dy\\\\\\ =\int_{-1}^4\int_{y^2-4}^{3y} 1\,dx\,dy\\\\\\ =\int_{-1}^4 y\big|_{y^2-4}^{3y} \,dy\\\\\\ =\int_{-1}^4 \big(3y-(y^2-4)\big) \,dy\\\\\\ =\int_{-1}^4 (3y-y^2+4)\,dy\\\\\\ =\left(\frac{3y^2}{2}-\frac{y^3}{3}+4y \right)\bigg|_{-1}^4\\\\\\ =\left(\frac{3\cdot 4^2}{2}-\frac{4^3}{3}+4\cdot 4 \right)-\left(\frac{3\cdot (-1)^2}{2}-\frac{(-1)^3}{3}+4\cdot (-1) \right)\\\\\\ =24-\frac{64}{3}+16-\frac{3}{2}+\frac{(-1)}{3}-(-4) A=\displaystyle\int_{-1}^4\int_{y^2-4}^{3y} 1\,dx\,dy\\\\\\ =\int_{-1}^4\int_{y^2-4}^{3y} 1\,dx\,dy\\\\\\ =\int_{-1}^4 y\big|_{y^2-4}^{3y} \,dy\\\\\\ =\int_{-1}^4 \big(3y-(y^2-4)\big) \,dy\\\\\\ =\int_{-1}^4 (3y-y^2+4)\,dy\\\\\\ =\left(\frac{3y^2}{2}-\frac{y^3}{3}+4y \right)\bigg|_{-1}^4\\\\\\ =\left(\frac{3\cdot 4^2}{2}-\frac{4^3}{3}+4\cdot 4 \right)-\left(\frac{3\cdot (-1)^2}{2}-\frac{(-1)^3}{3}+4\cdot (-1) \right)\\\\\\ =24-\frac{64}{3}+16-\frac{3}{2}+\frac{(-1)}{3}-(-4)](https://tex.z-dn.net/?f=A%3D%5Cdisplaystyle%5Cint_%7B-1%7D%5E4%5Cint_%7By%5E2-4%7D%5E%7B3y%7D+1%5C%2Cdx%5C%2Cdy%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-1%7D%5E4%5Cint_%7By%5E2-4%7D%5E%7B3y%7D+1%5C%2Cdx%5C%2Cdy%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-1%7D%5E4+y%5Cbig%7C_%7By%5E2-4%7D%5E%7B3y%7D+%5C%2Cdy%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-1%7D%5E4+%5Cbig%283y-%28y%5E2-4%29%5Cbig%29+%5C%2Cdy%5C%5C%5C%5C%5C%5C+%3D%5Cint_%7B-1%7D%5E4+%283y-y%5E2%2B4%29%5C%2Cdy%5C%5C%5C%5C%5C%5C+%3D%5Cleft%28%5Cfrac%7B3y%5E2%7D%7B2%7D-%5Cfrac%7By%5E3%7D%7B3%7D%2B4y+%5Cright%29%5Cbigg%7C_%7B-1%7D%5E4%5C%5C%5C%5C%5C%5C+%3D%5Cleft%28%5Cfrac%7B3%5Ccdot+4%5E2%7D%7B2%7D-%5Cfrac%7B4%5E3%7D%7B3%7D%2B4%5Ccdot+4+%5Cright%29-%5Cleft%28%5Cfrac%7B3%5Ccdot+%28-1%29%5E2%7D%7B2%7D-%5Cfrac%7B%28-1%29%5E3%7D%7B3%7D%2B4%5Ccdot+%28-1%29+%5Cright%29%5C%5C%5C%5C%5C%5C+%3D24-%5Cfrac%7B64%7D%7B3%7D%2B16-%5Cfrac%7B3%7D%7B2%7D%2B%5Cfrac%7B%28-1%29%7D%7B3%7D-%28-4%29)
![=\displaystyle24-\frac{65}{3}+16-\frac{3}{2}+4\\\\\\ =44-\frac{65}{3}-\frac{3}{2}\\\\\\ =\frac{264-130-9}{6}\\\\\\ =\boxed{\begin{array}{c}\dfrac{125}{6}\mathrm{~u.a.} \end{array}}~~~~\checkmark =\displaystyle24-\frac{65}{3}+16-\frac{3}{2}+4\\\\\\ =44-\frac{65}{3}-\frac{3}{2}\\\\\\ =\frac{264-130-9}{6}\\\\\\ =\boxed{\begin{array}{c}\dfrac{125}{6}\mathrm{~u.a.} \end{array}}~~~~\checkmark](https://tex.z-dn.net/?f=%3D%5Cdisplaystyle24-%5Cfrac%7B65%7D%7B3%7D%2B16-%5Cfrac%7B3%7D%7B2%7D%2B4%5C%5C%5C%5C%5C%5C+%3D44-%5Cfrac%7B65%7D%7B3%7D-%5Cfrac%7B3%7D%7B2%7D%5C%5C%5C%5C%5C%5C+%3D%5Cfrac%7B264-130-9%7D%7B6%7D%5C%5C%5C%5C%5C%5C+%3D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cdfrac%7B125%7D%7B6%7D%5Cmathrm%7B%7Eu.a.%7D+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%5Ccheckmark)
_________
10) • Achando a interseção entre as curvas
y = x³ e y = 2 – x²
x³ = 2 – x²
x³ + x² – 2 = 0 (x = 1 é raiz desta equação)
x³ – x² + x² + x² – 2 = 0
x³ – x² + 2x² – 2 = 0
x²(x – 1) + 2x² – 2 = 0
x²(x – 1) + 2x² – 2x + 2x – 2 = 0
x²(x – 1) + 2x(x – 1) + 2x – 2 = 0
x²(x – 1) + 2x(x – 1) + 2(x – 1) = 0
(x – 1)(x² + 2x + 2) = 0
O outro fator é um polinômio do 2º grau irredutível (não tem raízes reais). A única solução é x = 1.
Ponto (1, 1).
• Extremos de integração:
0 ≤ x ≤ 1
x³ ≤ y ≤ 2 – x²
• Área:
![A=\displaystyle\int_0^1\int_{x^3}^{2-x^2}1\,dy\,dx\\\\\\ =\int_0^1 y\big|_{x^3}^{2-x^2}\,dx\\\\\\ =\int_0^1(2-x^2-x^3)\,dx\\\\\\ =\left(2x-\frac{x^3}{3}-\frac{x^4}{4}\right)\bigg|_0^1\\\\\\ =2\cdot 1-\frac{1^3}{3}-\frac{1^4}{4}\\\\\\ =2-\frac{1}{3}-\frac{1}{4}\\\\\\ =\frac{24-4-3}{12}\\\\\\ =\boxed{\begin{array}{c}\dfrac{17}{12}\mathrm{~u.a.} \end{array}}~~~~\checkmark A=\displaystyle\int_0^1\int_{x^3}^{2-x^2}1\,dy\,dx\\\\\\ =\int_0^1 y\big|_{x^3}^{2-x^2}\,dx\\\\\\ =\int_0^1(2-x^2-x^3)\,dx\\\\\\ =\left(2x-\frac{x^3}{3}-\frac{x^4}{4}\right)\bigg|_0^1\\\\\\ =2\cdot 1-\frac{1^3}{3}-\frac{1^4}{4}\\\\\\ =2-\frac{1}{3}-\frac{1}{4}\\\\\\ =\frac{24-4-3}{12}\\\\\\ =\boxed{\begin{array}{c}\dfrac{17}{12}\mathrm{~u.a.} \end{array}}~~~~\checkmark](https://tex.z-dn.net/?f=A%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_%7Bx%5E3%7D%5E%7B2-x%5E2%7D1%5C%2Cdy%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_0%5E1+y%5Cbig%7C_%7Bx%5E3%7D%5E%7B2-x%5E2%7D%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cint_0%5E1%282-x%5E2-x%5E3%29%5C%2Cdx%5C%5C%5C%5C%5C%5C+%3D%5Cleft%282x-%5Cfrac%7Bx%5E3%7D%7B3%7D-%5Cfrac%7Bx%5E4%7D%7B4%7D%5Cright%29%5Cbigg%7C_0%5E1%5C%5C%5C%5C%5C%5C+%3D2%5Ccdot+1-%5Cfrac%7B1%5E3%7D%7B3%7D-%5Cfrac%7B1%5E4%7D%7B4%7D%5C%5C%5C%5C%5C%5C+%3D2-%5Cfrac%7B1%7D%7B3%7D-%5Cfrac%7B1%7D%7B4%7D%5C%5C%5C%5C%5C%5C+%3D%5Cfrac%7B24-4-3%7D%7B12%7D%5C%5C%5C%5C%5C%5C+%3D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%5Cdfrac%7B17%7D%7B12%7D%5Cmathrm%7B%7Eu.a.%7D+%5Cend%7Barray%7D%7D%7E%7E%7E%7E%5Ccheckmark)
Dúvidas? Comente.
Bons estudos! :-)
y = 4 – x² e y = x – 2
4 – x² = x – 2
0 = x – 2 – 4 + x²
x² + x – 6 = 0
x² + 3x – 2x – 6 = 0
x(x + 3) – 2(x + 3) = 0
(x + 3)(x – 2) = 0
x = – 3 ou x = 2
Pontos (– 3, –5) e (2, 0).
• Extremos de integração:
x varia em extremos fixos: – 3 ≤ x ≤ 2;
y varia entre duas funções de x: x – 2 ≤ y ≤ 4 – x².
A área é dada por
_________
9) • Achando a interseção entre as curvas
x = y² – 4 e x = 3y
y² – 4 = 3y
y² – 3y – 4 = 0
y² + y – 4y – 4 = 0
y(y + 1) – 4(y + 1) = 0
(y + 1)(y – 4) = 0
y = – 1 ou y = 4
Pontos (– 3, – 1) e (4, 12).
• Extremos de integração:
– 1 ≤ y ≤ 3;
y² – 4 ≤ x ≤ 3y.
• Área:
_________
10) • Achando a interseção entre as curvas
y = x³ e y = 2 – x²
x³ = 2 – x²
x³ + x² – 2 = 0 (x = 1 é raiz desta equação)
x³ – x² + x² + x² – 2 = 0
x³ – x² + 2x² – 2 = 0
x²(x – 1) + 2x² – 2 = 0
x²(x – 1) + 2x² – 2x + 2x – 2 = 0
x²(x – 1) + 2x(x – 1) + 2x – 2 = 0
x²(x – 1) + 2x(x – 1) + 2(x – 1) = 0
(x – 1)(x² + 2x + 2) = 0
O outro fator é um polinômio do 2º grau irredutível (não tem raízes reais). A única solução é x = 1.
Ponto (1, 1).
• Extremos de integração:
0 ≤ x ≤ 1
x³ ≤ y ≤ 2 – x²
• Área:
Dúvidas? Comente.
Bons estudos! :-)
Usuário anônimo:
Perfeito!
Perguntas interessantes
Administração,
1 ano atrás
Português,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás
História,
1 ano atrás