Matemática, perguntado por ferreiradulcineia74, 10 meses atrás

Use a fórmula da PA: a1+(n-1)r para calcular o oitavo termo da sequência:(2,10,18,26...)​

Soluções para a tarefa

Respondido por viniciusszillo
2

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da sequência (2, 10, 18, 26,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:2

c)oitavo termo (a₈): ?

d)número de termos (n): 8

  • Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 8ª), equivalente ao número de termos.

e)Embora não se saiba o valor do oitavo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem, afastam-se do zero, para a direita dele, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 10 - 2 ⇒

r = 8    (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o oitavo termo:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

a₈ = 2 + (8 - 1) . (8) ⇒

a₈ = 2 + (7) . (8) ⇒         (Veja a Observação 2.)

a₈ = 2 + 56 ⇒

a₈ = 58

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O oitavo termo da P.A.(2, 10, 18,...) é 58.

====================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₈ = 58 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o oitavo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₈ = a₁ + (n - 1) . (r) ⇒

58 = a₁ + (8 - 1) . (8) ⇒

58 = a₁ + (7) . (8) ⇒

58 = a₁ + 56 ⇒  

58 - 56 = a₁ ⇒  

2 = a₁ ⇔             (O símbolo ⇔ significa "equivale a".)

a₁ = 2                  (Provado que a₈ = 58.)

→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/1185711

https://brainly.com.br/tarefa/12967381

https://brainly.com.br/tarefa/27997302

https://brainly.com.br/tarefa/27992036

https://brainly.com.br/tarefa/1948447

brainly.com.br/tarefa/18095215

brainly.com.br/tarefa/26624276

brainly.com.br/tarefa/17297786

brainly.com.br/tarefa/19416145


ferreiradulcineia74: Podem ter confundido as questões. Logo temos um erro.
viniciusszillo: Provavelmente a questão se referia ao décimo oitavo termo da P.A., porém, digitaram apenas "oitavo termo da P.A.".
viniciusszillo: Note que se for o décimo oitavo, a alternativa B seria o resultado.
ferreiradulcineia74: Entendi
ferreiradulcineia74: Muito obrigado
ferreiradulcineia74: Tenha uma boa noite
viniciusszillo: Espero haver sido útil a você.
ferreiradulcineia74: Desculpe o incomodo, me ajudou muito.
viniciusszillo: Quando precisar, se eu souber, terei a maior boa vontade em ajudá-la.
viniciusszillo: Novamente desejo-lhe uma ótima semana.
Perguntas interessantes