Usando o método de integração por substituição determine a integral ∫ (x+1)^4 dx
Soluções para a tarefa
Respondido por
2
Olá!!
Considere
, então
. Agora é só substituir, veja:
![\\ \int (x + 1)^4 \ dx = \\\\\\ \int \lambda^4 \ d\lambda = \\\\\\ \frac{1}{5} \cdot \lambda^5 + \text{c} = \\\\\\ \boxed{\frac{(x + 1)^5}{5} + \text{c}} \\ \int (x + 1)^4 \ dx = \\\\\\ \int \lambda^4 \ d\lambda = \\\\\\ \frac{1}{5} \cdot \lambda^5 + \text{c} = \\\\\\ \boxed{\frac{(x + 1)^5}{5} + \text{c}}](https://tex.z-dn.net/?f=%5C%5C+%5Cint+%28x+%2B+1%29%5E4+%5C+dx+%3D+%5C%5C%5C%5C%5C%5C+%5Cint+%5Clambda%5E4+%5C+d%5Clambda+%3D+%5C%5C%5C%5C%5C%5C+%5Cfrac%7B1%7D%7B5%7D+%5Ccdot+%5Clambda%5E5+%2B+%5Ctext%7Bc%7D+%3D+%5C%5C%5C%5C%5C%5C+%5Cboxed%7B%5Cfrac%7B%28x+%2B+1%29%5E5%7D%7B5%7D+%2B+%5Ctext%7Bc%7D%7D)
Considere
Perguntas interessantes