usando diretamente o cálculo de limite encontre as derivadas das seguintes funções:
Anexos:
Soluções para a tarefa
Respondido por
2
a) f(x) = 3x - 1
lim[f(x+▲x) - f(x)]/▲x
▲x→0
lim{[3(x+▲x)-1] - [3x-1]}/▲x
▲x→0
lim{3x + 3▲x - 1} - {3x - 1}/▲x
▲x→0
lim{3x + 3▲x - 1 - 3x + 1}/▲x
▲x→0
lim{3▲x}/▲x
▲x→0
lim{3} = 3
▲x→0
b) f(x) = x² - 2x
lim[f(x+▲x) - f(x)]/▲x
▲x→0
lim{[x² + 2x▲x + ▲²x - 2(x + ▲x)] - [x² - 2x]}/▲x
▲x→0
lim{x² + 2x▲x + ▲²x - 2x - 2▲x - x² + 2x}/▲x
▲x→0
lim{2x▲x + ▲²x - 2▲x}/▲x
▲x→0
lim{[2x + ▲x - 2]▲x}/▲x
▲x→0
lim[2x + ▲x - 2]
▲x→0
= 2x - 2
Sepauto
18/01/2018
lim[f(x+▲x) - f(x)]/▲x
▲x→0
lim{[3(x+▲x)-1] - [3x-1]}/▲x
▲x→0
lim{3x + 3▲x - 1} - {3x - 1}/▲x
▲x→0
lim{3x + 3▲x - 1 - 3x + 1}/▲x
▲x→0
lim{3▲x}/▲x
▲x→0
lim{3} = 3
▲x→0
b) f(x) = x² - 2x
lim[f(x+▲x) - f(x)]/▲x
▲x→0
lim{[x² + 2x▲x + ▲²x - 2(x + ▲x)] - [x² - 2x]}/▲x
▲x→0
lim{x² + 2x▲x + ▲²x - 2x - 2▲x - x² + 2x}/▲x
▲x→0
lim{2x▲x + ▲²x - 2▲x}/▲x
▲x→0
lim{[2x + ▲x - 2]▲x}/▲x
▲x→0
lim[2x + ▲x - 2]
▲x→0
= 2x - 2
Sepauto
18/01/2018
isa1183:
obrigada
Perguntas interessantes
Português,
9 meses atrás
Matemática,
9 meses atrás
Matemática,
9 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Filosofia,
1 ano atrás
Química,
1 ano atrás