Usando a técnica da integral dupla, encontre o volume do sóli do gerado pela expressão ∫ ∫(x2 + y2) dxdy para os intervalos R=[- 1,1] x[-2,1
Soluções para a tarefa
Respondido por
2
Vamos calcular a integral resolvendo a questão:
![V= \int\limits^{-1}_1 { \int\limits^{-2}_1 {(x^{2}+y^{2})} \, dx } \, dy \\\\\\\ V= \int\limits^{-1}_1 {dx.[ \int\limits^{-2}_1 {(x^{2}+y^{2})} \, dy } ]\\\\\\V= \int\limits^{-1}_1 {} \, dx .[ x^2.y+ \frac{y^3}{3} ]^{-2}_1\\\\\\V= \int\limits^{-1}_1 {dx} \, .[(x^{2}.-2+ \frac{(-2)^{3}}{3} )-(x^{2}.1+ \frac{(1)^{3}}{3} )]\\\\\\ V=\int\limits^{-1}_1 {dx} .[(-2x^{2}- \frac{8}{3} )-(x^{2}+ \frac{1}{3} )]\\\\\\V= \int\limits^{-1}_1 {dx} .[-2x^{2}-x^{2}- \frac{8}{3} - \frac{1}{3} ] V= \int\limits^{-1}_1 { \int\limits^{-2}_1 {(x^{2}+y^{2})} \, dx } \, dy \\\\\\\ V= \int\limits^{-1}_1 {dx.[ \int\limits^{-2}_1 {(x^{2}+y^{2})} \, dy } ]\\\\\\V= \int\limits^{-1}_1 {} \, dx .[ x^2.y+ \frac{y^3}{3} ]^{-2}_1\\\\\\V= \int\limits^{-1}_1 {dx} \, .[(x^{2}.-2+ \frac{(-2)^{3}}{3} )-(x^{2}.1+ \frac{(1)^{3}}{3} )]\\\\\\ V=\int\limits^{-1}_1 {dx} .[(-2x^{2}- \frac{8}{3} )-(x^{2}+ \frac{1}{3} )]\\\\\\V= \int\limits^{-1}_1 {dx} .[-2x^{2}-x^{2}- \frac{8}{3} - \frac{1}{3} ]](https://tex.z-dn.net/?f=V%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7B+%5Cint%5Climits%5E%7B-2%7D_1+%7B%28x%5E%7B2%7D%2By%5E%7B2%7D%29%7D+%5C%2C+dx+%7D+%5C%2C+dy+%5C%5C%5C%5C%5C%5C%5C+V%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx.%5B+%5Cint%5Climits%5E%7B-2%7D_1+%7B%28x%5E%7B2%7D%2By%5E%7B2%7D%29%7D+%5C%2C+dy+%7D+%5D%5C%5C%5C%5C%5C%5CV%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7B%7D+%5C%2C+dx+.%5B+x%5E2.y%2B+%5Cfrac%7By%5E3%7D%7B3%7D+%5D%5E%7B-2%7D_1%5C%5C%5C%5C%5C%5CV%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx%7D+%5C%2C+.%5B%28x%5E%7B2%7D.-2%2B+%5Cfrac%7B%28-2%29%5E%7B3%7D%7D%7B3%7D+%29-%28x%5E%7B2%7D.1%2B+%5Cfrac%7B%281%29%5E%7B3%7D%7D%7B3%7D+%29%5D%5C%5C%5C%5C%5C%5C+V%3D%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx%7D+.%5B%28-2x%5E%7B2%7D-+%5Cfrac%7B8%7D%7B3%7D+%29-%28x%5E%7B2%7D%2B+%5Cfrac%7B1%7D%7B3%7D+%29%5D%5C%5C%5C%5C%5C%5CV%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx%7D+.%5B-2x%5E%7B2%7D-x%5E%7B2%7D-+%5Cfrac%7B8%7D%7B3%7D+-+%5Cfrac%7B1%7D%7B3%7D+%5D+)
![V= \int\limits^{-1}_1 {dx}.[-3x^{2}- \frac{9}{3} ]\\\\\\V= \int\limits^{-1}_1 {dx} .[-3x^{2}-3]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (resolvendo\ a\ segunda\ parte)\\\\\\V= \int\limits^{-1}_1 {(-3x^{2}-3)} \, dx \\\\\\V=[ \frac{-3x^{3}}{3} -3x ]^{-1}_1 \\\\\\V=[-x^{3}-3x]^{-1}_1 \\\\\\V=[-(-1)^{3}-3.(-1)]-[-(1)^{3}-3.(1)]\\\\\\V=[1+3]-[-1-3]\\\\\\V=[4]-[-4]\\\\\\V=4+4\\\\\\\boxed{\boxed{V=8\ u.v}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Resposta\ :\ 8\ u.v\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok V= \int\limits^{-1}_1 {dx}.[-3x^{2}- \frac{9}{3} ]\\\\\\V= \int\limits^{-1}_1 {dx} .[-3x^{2}-3]\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (resolvendo\ a\ segunda\ parte)\\\\\\V= \int\limits^{-1}_1 {(-3x^{2}-3)} \, dx \\\\\\V=[ \frac{-3x^{3}}{3} -3x ]^{-1}_1 \\\\\\V=[-x^{3}-3x]^{-1}_1 \\\\\\V=[-(-1)^{3}-3.(-1)]-[-(1)^{3}-3.(1)]\\\\\\V=[1+3]-[-1-3]\\\\\\V=[4]-[-4]\\\\\\V=4+4\\\\\\\boxed{\boxed{V=8\ u.v}}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Resposta\ :\ 8\ u.v\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ok](https://tex.z-dn.net/?f=V%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx%7D.%5B-3x%5E%7B2%7D-+%5Cfrac%7B9%7D%7B3%7D+%5D%5C%5C%5C%5C%5C%5CV%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7Bdx%7D+.%5B-3x%5E%7B2%7D-3%5D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+%28resolvendo%5C+a%5C+segunda%5C+parte%29%5C%5C%5C%5C%5C%5CV%3D+%5Cint%5Climits%5E%7B-1%7D_1+%7B%28-3x%5E%7B2%7D-3%29%7D+%5C%2C+dx+%5C%5C%5C%5C%5C%5CV%3D%5B+%5Cfrac%7B-3x%5E%7B3%7D%7D%7B3%7D+-3x+%5D%5E%7B-1%7D_1+%5C%5C%5C%5C%5C%5CV%3D%5B-x%5E%7B3%7D-3x%5D%5E%7B-1%7D_1++%5C%5C%5C%5C%5C%5CV%3D%5B-%28-1%29%5E%7B3%7D-3.%28-1%29%5D-%5B-%281%29%5E%7B3%7D-3.%281%29%5D%5C%5C%5C%5C%5C%5CV%3D%5B1%2B3%5D-%5B-1-3%5D%5C%5C%5C%5C%5C%5CV%3D%5B4%5D-%5B-4%5D%5C%5C%5C%5C%5C%5CV%3D4%2B4%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7BV%3D8%5C+u.v%7D%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+%5C++%5C+Resposta%5C+%3A%5C+8%5C+u.v%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C++%5C+%5C+%5C+%5C+%5C+%5C+ok)
Perguntas interessantes
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
1 ano atrás
História,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás