Matemática, perguntado por Usuário anônimo, 1 ano atrás


URGENTEEEEEE !

Nas expressões, introduza o fator externo no radicando:

a) 2√2

b) 5√3

c) 2
∛10

d) 3 vezes raiz quarta de 2

e) 2∛7

f) 6√2

-----------------------

Resolva os sistemas

a) {x²+y²=13
    {x-y=1

b) {x/y=1/2
    {x²+y=35

c) {x-2y=-2
    {x²+xy=8

Soluções para a tarefa

Respondido por Usuário anônimo
1
a)
2 \sqrt{2} = \sqrt{2.2^2} = \sqrt{2.4} = \sqrt{8}

b)
5 \sqrt{3} = \sqrt{3.5^2} = \sqrt{3.25} = \sqrt{75}

c)
2 \sqrt[3]{10} = \sqrt[3]{10.2^3} = \sqrt[3]{10.8} = \sqrt[3]{80}

d)
3 \sqrt[4]{2} = \sqrt[4]{2.3^4} = \sqrt[4]{2.81} = \sqrt[4]{162}

e)
2 \sqrt[3]{7} = \sqrt[3]{7.2^3} = \sqrt[3]{7.8} = \sqrt[3]{56}

f)
6 \sqrt{2} = \sqrt{2.6^2} = \sqrt{2.36} = \sqrt{72}

¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨
Sistemas

a)
 \left \{ {{x^2+y^2=13} \atop {x-y=1}} \right.

isolar  (substituição)
x=1+y

subst/ em
x²+y²=13

(1+y)²+y²=13
1+2y+y²+y²=13
2y²+2y+1-13=0
2y²+2y-12=0  (÷2)
y²+y-6=0

Δ=b²-4ac
Δ=1+24
Δ=25
√Δ=√25=± 5

y= \frac{-1\pm5}{2}

y'= \frac{-1-5}{2} =- \frac{6}{2} =-3

y"= \frac{-1+5}{2} = \frac{4}{2} =2

como
x=1+y                        x=1+y            
p/ y'=-3                        p/ y"=2
x'=1-3                          x"=1+2
x'=-2                            x"=3

S={(-2,-3);(3,2)}

¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨
b)
 \left \{ {{ \frac{x}{y} = \frac{1}{2} } \atop {x^2+y=35}} \right.

y=2x

subst/ em

x²+y=35
x²+2x=35
x²+2x-35=0

Δ=b²-4ac
Δ=4+140
Δ=144
√Δ=√144=± 12

x= \frac{-2\pm12}{2}

x'= \frac{-2+12}{2} = \frac{10}{2} =5

x"= \frac{-2-12}{2} =- \frac{14}{2} =-7

como
y=2x                                  y=2x
p/x'=5                                 p/ x"=-7
y'=2(5)                                  y"=2(-7)
y'=10                                    y"=-14

S={(5,10);(-7,-14)}

¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨¨
c)
 \left \{ {{x-2y=-2} \atop {x^2+xy=8}} \right.

isola
x=2y-2

subst/  em
x²+xy=8
(2y-2)²+y(2y-2)=8
4y²-8y+4+2y²-2y-8=0
6y²-10y-4=0    (÷2)
3y²-5y-2=0

Δ=b²-4ac
Δ=25+24
Δ=49
√Δ=√49=± 7

y= \frac{5\pm7}{6}

y'= \frac{5+7}{6} = \frac{12}{6} =2

y"= \frac{5-7}{6} =- \frac{2}{6} =- \frac{1}{3}

como
x=2y-2
p/y'=- \frac{1}{3}

x'=2( \frac{-1}{3} )-2

x'=- \frac{2}{3} -2= \frac{-2-6}{3} =- \frac{8}{3}

p/y"=2
x"=2(2)-2
x"=4-2
x"=2

S={(- \frac{8}{3} ,- \frac{1}{3} );(2,2)}


Usuário anônimo: Cumpri o prometido.
Perguntas interessantes