urgenteeee 4) Um valor foi aplicado a juros simples de 6% ao mês durante 5 meses, e em seguida, o montante foi aplicado durante mais 5
meses a taxa de 4% ao mês, gerando um montante de R$ 234,00. Qual o valor aplicado inicialmente?
Soluções para a tarefa
Juros simples
M= C • (1+i•n)
M= 234,00
C= ?
i= 4%/100>> 0,04
n= 5
234,00= C • (1+0,04•5)
234,00= C • (1+0,2)
234,00= C • 1,2
C= 234,00/1,2
C= 195,00
_______________________
Juros simples
M= C • (1+i•n)
M= 195,00
C= ?
i= 6%/100>> 0,06
n= 5
195,00= C • (1+0,06•5)
195,00= C • (1+0,3)
195,00= C • 1,3
C= 195,00/1,3
C= 150,00
O capital aplicado inicialmente foi de R$ 150,00.
Resposta:
Capital Inicial da aplicação R$150,00
Explicação passo-a-passo:
.
=> Podemos resolver este exercício de 2 formas:
..calculando como se fossem 2 aplicações diferentes e sucessivas ...em que o Montante da 1ª aplicação será o Capital Inicial da 2ª aplicação (como fez o colega anterior).
...ou utilizando apenas o Capital Inicial ...e ponderá-lo com 2 fatores de capitalização ...vamos ver como:
Temos a fórmula:
M = C . (1 + i.t)
...mas como temos duas taxas diferentes ..vamos "adaptar" o fator de capitalização a esse facto ...donde resulta:
M = C . (1 + i₁ . t₁) . (1 + i₂ . t₂)
onde
M = Montante final da aplicação, neste caso M = 234
C = Capital Inicial da aplicação, neste caso a determinar
i₁ = Taxa de juro do primeiro "ciclo" de capitalização, neste caso MENSAL 6% ...ou 0,06
t₁ = Prazo do primeiro ciclo de capitalização, neste caso t₁ = 5
i₂ = Taxa do segundo "ciclo" da aplicação, neste caso 4% ...ou 0,04
t₂ = Prazo do segundo "ciclo" de capitalização, neste caso t₂ = 5
substituindo na fórmula teremos
234 = C . (1 + 0,06 . 5) . (1 + 0,04 . 5)
234 = C . (1 + 0,30) . (1 + 0,20)
234 = C . (1,3) . (1,2)
234 = C . (1,56)
234/1,56 = C
150 = C ← Capital Inicial da aplicação R$150,00
Espero ter ajudado