Matemática, perguntado por bunnyrully, 6 meses atrás

URGENTE‼️‼️

Quais as raízes da equação: log12 (x2 - X)=1 ?

Soluções para a tarefa

Respondido por auditsys
0

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{log_{12}\:(x^2 - x) = 1}

\mathsf{log_{12}\:(x^2 - x) = log_{12}\:12}

\mathsf{x^2 - x = 12}

\mathsf{x^2 - x - 12 = 0}

\mathsf{\Delta = b^2 - 4.a.c}

\mathsf{\Delta = (-1)^2 - 4.1.(-12)}

\mathsf{\Delta = 1 + 48}

\mathsf{\Delta = 49}

\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{1 \pm \sqrt{49}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{1 + 7}{2} = \dfrac{8}{2} = 4}\\\\\mathsf{x'' = \dfrac{1 - 7}{2} = -\dfrac{6}{2} = -3}\end{cases}}

\boxed{\boxed{\mathsf{S = \{4;-3\}}}}

Perguntas interessantes