Matemática, perguntado por Erudonn, 1 ano atrás

Unifor-CE
Simplificando-se (2^{- \frac{2}{3} } - 3^{-\frac{2}{3}}) . ( \sqrt[3]{3} - \sqrt[3]{2}) ^{-1} . \sqrt[3]{36}

a) 6^{\frac{2}{3} } \\ <br />
b)2^{\frac{1}{3} } + 3^{\frac{1}{3} }\\ <br />
c)3^{\frac{1}{3}}  - 2^{\frac{1}{3} } \\<br />
d)5^{\frac{1}{3} }\\<br />
e)6

gabarito: b

ajuda??

Soluções para a tarefa

Respondido por Verkylen
22



(2^{-\frac{2}{3}}-3^{-\frac{2}{3}})\cdot\left(\sqrt[3]{3}-\sqrt[3]{2}\right)^{-1}\cdot\sqrt[3]{36}=\\\\\left(\dfrac{1}{\sqrt[3]{2^2}}-\dfrac{1}{\sqrt[3]{3^2}}\right)\cdot\left(\dfrac{1}{\sqrt[3]{3}-\sqrt[3]{2}}\right)\cdot\sqrt[3]{36}=\\\\\\\left(\dfrac{\sqrt[3]{3^2}-\sqrt[3]{2^2}}{\sqrt[3]{2^2}\cdot\sqrt[3]{3^2}}\right)\cdot\left(\dfrac{1}{(\sqrt[3]{3}-\sqrt[3]{2})}\right)\cdot\sqrt[3]{36}=


\left(\dfrac{\sqrt[3]{3^2}-\sqrt[3]{2^2}}{\sqrt[3]{6^2}}\right)\cdot\left(\dfrac{1}{(\sqrt[3]{3}-\sqrt[3]{2})}\right)\cdot\sqrt[3]{36}=\\\\\\\left(\dfrac{\sqrt[3]{3^2}-\sqrt[3]{2^2}}{(\sqrt[3]{6^2})\cdot(\sqrt[3]{3}-\sqrt[3]{2})}\right)\cdot\sqrt[3]{6^2}=\\\\\\\dfrac{(\sqrt[3]{6^2})\cdot(\sqrt[3]{3^2}-\sqrt[3]{2^2})}{(\sqrt[3]{6^2})\cdot(\sqrt[3]{3}-\sqrt[3]{2})}=\\\\\\\dfrac{(\sqrt[3]{3^2}-\sqrt[3]{2^2})}{(\sqrt[3]{3}-\sqrt[3]{2})}=


\dfrac{(\sqrt[3]{3}-\sqrt[3]{2})\cdot(\sqrt[3]{3}+\sqrt[3]{2})}{(\sqrt[3]{3}-\sqrt[3]{2})}=\\\\\\(\sqrt[3]{3}+\sqrt[3]{2})=\boxed{3^{\frac{1}{3}}+2^{\frac{1}{3}}}


Alternativa b).
Perguntas interessantes