Uma reta r é secante a um plano B (beta) em um ponto C e forma um ângulo de 60° com esse plano. Um ponto D pertencente a dista 20cm de C. Qual é a distância entre D e B (beta)?
Soluções para a tarefa
Respondido por
4
A distância entre D e β é 10√3 cm.
A situação descrita no enunciado pode ser representada por um triângulo retângulo (veja na figura abaixo).
A hipotenusa é a distância entre os pontos C e D.
O cateto oposto ao ângulo de 60° é a distância entre D e β (o plano).
Assim, podemos utilizar a relação seno.
seno θ = cateto oposto
hipotenusa
seno 60° = d
20
√3 = d
2 20
2.d = 20.√3
d = 20√3
2
d = 10√3
Anexos:
Respondido por
0
Resposta:
A distância entre D e β é 10√3 cm.
A situação descrita no enunciado pode ser representada por um triângulo retângulo (veja na figura abaixo).
A hipotenusa é a distância entre os pontos C e D.
O cateto oposto ao ângulo de 60° é a distância entre D e β (o plano).
Explicação passo a passo:
Mais 15 pontos para a conta
A distância entre D e β é 10√3 cm.
A situação descrita no enunciado pode ser representada por um triângulo retângulo (veja na figura abaixo).
A hipotenusa é a distância entre os pontos C e D.
O cateto oposto ao ângulo de 60° é a distância entre D e β (o plano).
Explicação passo a passo:
Mais 15 pontos para a conta
Perguntas interessantes
Ed. Física,
9 meses atrás
História,
9 meses atrás
Matemática,
9 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás