Matemática, perguntado por Adamys, 1 ano atrás


Uma reta paralela ao lado BC de um triângulo ABC determina o ponto D em AB e E
em AC . Sabendo – se que AD = x, BD = x + 6, AE = 3 e EC = 4, determine o lado
AB do triângulo.

Obs: Responder bem explicadamente.

Soluções para a tarefa

Respondido por teixeira88
543
De acordo com o Teorema de Tales, temos duas retas concorrentes no ponto A (BA e CA), cortadas por uma paralela a BC (DE). Esta paralela determina sobre os segmentos AB e AC segmentos que são proporcionais:
AD está para DB, assim como AE está para EC:
AD/DB = AE/EC
Assim, vamos substituir nesta relação os valores fornecidos pelo problema:
x/x+6 = 3/4
Multiplicando os meios pelos extremos desta proporção, temos:
4x = 3 (x + 6)
4x = 3x + 18
4x - 3x = 18
x = 18
Se o valor de x é 18, vamos substitui-lo em 
AD = x = 18
DB = x + 6 = 18 + 6 = 24
Como o lado AB do triângulo é a soma dos valores AD + DB, temos
AB = 18 + 24
AB = 42

Adamys: Muito obrigado!
Respondido por socorrooooo000
24

Resposta:

espero ter ajudado :)

Explicação passo a passo:

Anexos:
Perguntas interessantes