Uma progressão aritmética de n termos tem razão igual a 3. Se retirarmos os termos de ordem par, os de orden ímpar formarão uma progressão
(a) aritmética de razão 2.
(b) aritmética de razão 3.
(c) geométrica de razão 6.
(d) geométrica de razão 3.
(e) aritmética de razão 6.
Me ajudem por favor!!
Soluções para a tarefa
Respondido por
8
seja a PA de n termos com razão 3
[ 3 , 6, 9 , 12, 15 ......]
ordem par > 3,9, 15
ordem par > 6 , 12
retirando os termos de ordem par ficam os de ordem impar 3, 9.15
a1 =3
a2 = 9
a3 = 15
r = 9 - 3 = 6 ****
PA se a1 + a3 = 2a2
3 + 15 = 2 ( 9 )
18 = 18 logo é uma PA de razão 6 ***
resposta ( e ) ****
[ 3 , 6, 9 , 12, 15 ......]
ordem par > 3,9, 15
ordem par > 6 , 12
retirando os termos de ordem par ficam os de ordem impar 3, 9.15
a1 =3
a2 = 9
a3 = 15
r = 9 - 3 = 6 ****
PA se a1 + a3 = 2a2
3 + 15 = 2 ( 9 )
18 = 18 logo é uma PA de razão 6 ***
resposta ( e ) ****
Perguntas interessantes
Matemática,
9 meses atrás
História,
9 meses atrás
Espanhol,
1 ano atrás
Português,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás