Matemática, perguntado por vladimirclaudio81, 9 meses atrás

Uma pirâmide quadrangular regular tem altura igual a √7 cm e apótema da base igual a 3√2 cm. Calcular:
a) a aresta da base
b) a apótema da pirâmide
c) a aresta lateral
d) a área da base
e) a área lateral
f) a área total
g) o volume

Soluções para a tarefa

Respondido por CyberKirito
4

\huge\boxed{\boxed{\boxed{\mathfrak{Legenda:}}}}

\mathsf{a}→aresta da base

\mathsf{a_{p}} →apótema da pirâmide

\mathsf{\ell} →aresta lateral

\mathsf{B}→área da base

\mathsf{A_{L}}→área lateral

\mathsf{A_{t}}→área total

\mathsf{V}→volume da pirâmide

\mathsf{m} →apótema da base

\mathsf{h}→altura

Solução :

a)

\mathsf{m=\dfrac{a}{2}}\\\mathsf{3\sqrt{2}=\dfrac{a}{2}\to~a=2.3\sqrt{2}}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{a=6\sqrt{2}~cm}}}}}

b)

\mathsf{a_{p}^2=h^2+m^2}\\\mathsf{a_{p}^2=(\sqrt{7})^2+(3\sqrt{2})^2}\\\mathsf{a_{p}^2=7+18}\\\mathsf{a_{p}^2=25}

\mathsf{a_{p}=\sqrt{25}}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{a_{p}=5~cm}}}}}

c)

\mathsf{\ell^2=a_{p}^2+(\dfrac{a}{2})^2}\\\mathsf{\ell^2=25+(3\sqrt{2})^2}\\\mathsf{\ell^2=25+18}\\\mathsf{\ell^2=43}

\large\boxed{\boxed{\boxed{\boxed{\mathsf{\ell=\sqrt{43}~cm}}}}}

d)

\mathsf{B=a^2}\\\mathsf{B=(6\sqrt{2}}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{B=72~cm^2}}}}}

e)

\mathsf{A_{L}=4.\dfrac{1}{2}.a.a_{p}}\\\mathsf{A_{L}=2.6\sqrt{2}.5}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{A_{L}=60\sqrt{2}~cm^2}}}}}

f)

\mathsf{A_{t}=A_{L}+B}\\\mathsf{A_{t}=60\sqrt{2}+72}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{A_{t}=12(6+5\sqrt{2})~cm^2}}}}}

g)

\mathsf{V=\dfrac{1}{3}.B.h}\\\mathsf{V=\dfrac{1}{3}.72.\sqrt{7}}\\\large\boxed{\boxed{\boxed{\boxed{\mathsf{V=24\sqrt{7}~cm^3}}}}}

Perguntas interessantes