Uma pessoa paga uma entrada no valor de R$ 23,60 na compra de um equipamento, e paga mais 4 prestações mensais, iguais e sucessivas no valor de R$ 14,64 cada uma. A instituição financiadora cobra uma taxa de juros de 120% ao ano, capitalizados mensalmente. Com base nestas informações podemos afirmar que o valor que mais se aproxima do valor à vista do equipamento adquirido é:
a. R$ 70,00
b. R$ 76,83
c. R$ 86,42
d. R$ 88,00
e. R$ 95,23
Gabarito: A
Quero saber o mais detalhadamente possível como resolver a questão.
Soluções para a tarefa
Respondido por
3
Solução:
E = R$ 23,60
n — 4 prestações mensais
C = R$ 14,64
P = ?
P = E + C x ag . = 23,60 + 14,64 x a^10% = 23,60 + 14,64 (3,169865) = R$ 70,00
Letra A
E = R$ 23,60
n — 4 prestações mensais
C = R$ 14,64
P = ?
P = E + C x ag . = 23,60 + 14,64 x a^10% = 23,60 + 14,64 (3,169865) = R$ 70,00
Letra A
Respondido por
4
Se temos 120% ao ano capitalizado mensalmente, então temos que i = 10% ao mês.
Então temos:
E = 23,60
n = 4
i = 10%
C = 14,64
e V = S*C + E
Aplicando na fórmula do fato de acumulação(S), assim:
Substituindo em V = S*C + E temos:
V = 3,1698*14,64 + 23,60
V = 70.00
Alternativa a)
Então temos:
E = 23,60
n = 4
i = 10%
C = 14,64
e V = S*C + E
Aplicando na fórmula do fato de acumulação(S), assim:
Substituindo em V = S*C + E temos:
V = 3,1698*14,64 + 23,60
V = 70.00
Alternativa a)
Perguntas interessantes
Matemática,
9 meses atrás
História,
9 meses atrás
História,
1 ano atrás
História,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás