Matemática, perguntado por AndriellySardella, 1 ano atrás

Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. Se ela caminhar 90 metros em linha reta, chegará a um ponto B, de onde poderá ver o topo C do prédio, sob um ângulo de 60°. Quantos metros ela deverá se afastar do ponto A, andando em linha reta no sentido de A para B, para que possa enxergar o topo do prédio sob um ângulo de 30°?

Anexos:

paulafonseca: Tem foto da figura ?
AndriellySardella: tem
paulafonseca: Posta ela pfvr, ai fica melhor
AndriellySardella: postei

Soluções para a tarefa

Respondido por teixeira88
850
Vamos chamar ao ponto de onde esta pessoa poderá enxergar o prédio sob um ângulo de 30º de D.
Assim, teremos um triângulo BCD, no qual:
- O ângulo DBC mede 120º, pois é externo ao ângulo ABC, que mede 60º;
- O ângulo BDC medirá 30º, por imposição do problema;
- Então, o ângulo BCD também medirá 30º, pois a soma dos ângulos internos do triângulo BCD é igual a 180º.
- Como consequência, o triângulo BCD é isósceles (os ângulos da base são iguais) e os lados BC e BD são iguais [1].
- BD é a distância que estamos procurando para solucionar a questão. Como ela é igual a BC, basta então obtermos o valor da distância BC.
- Este valor pode ser obtido no triângulo ABC, pois:
- O triângulo ABC é retângulo, nele conhecemos os três ângulos (A = 90º,      B = 60º e C = 30º), além de conhecemos o cateto AB (90 m).
- A hipotenusa deste triângulo pode ser obtida pela função trigonométrica seno (ou cosseno), pois:
sen = cateto oposto ÷ hipotenusa
sen 30º = AB ÷ BC
BC = AB ÷ sen 30º
BC = 90 m ÷ 0,5
BC = 180 m
(Utilizando a função cosseno chegaríamos ao mesmo resultado:
cos = cateto adjacente ÷ hipotenusa
cos 60º = 90 m ÷ BC
BC = 90 m ÷ 0,5
BC = 180 m

Como vimos em [1] que BC = BD,

BD = 180 m

Como a questão pede qual a distância que a pessoa deve andar desde o ponto A, devemos somar à distância BD a distância AB:
AD = AB + BD
AD = 90 m + 180 m
AD = 270 m

R.: A pessoa deve andar a partir de A para B a distância de 270 m para enxergar o prédio sob um ângulo de 30º.
Respondido por elcioqsms
216

Resposta:

a distância será de 270 m para ver o topo do prédio num ângulo de 30º.

Explicação passo-a-passo:

Simples 1º passo você deve achar a altura do prédio tg 60º = cateto oposto : cateto adjacente.

logo: tg 60º = x / 90 ---- tg de 60º é √3 ( fazendo os meios pelo extremo - o famoso cruz credo kkk ), teremos x = 90√3 que é a altura do prédio , não precisa extrair a raiz de 3, porque vamos corta-la a seguir.

Agora é só trocar o ângulo de 60º pelo o de 30º conforme o anunciado pediu, no lugar do 90 m coloque a variável x ( em outras palavras, teremos uma nova figura), porém já conhecendo a altura do prédio, entendeu ?

com esse nova figura caímos novamente na razão da Tangente; que agora num ângulo de 30º.

Logo fica: Tg 30º = 90√3 : d ( " foi a variável que eu escolhi, vc poderia chamar de x ), então vamos lá.

Tg 30º = √3 / 3 ( lembra da tabela dos ângulos notáveis - 30º,45º e 60º)

voltando aos cálculos , temos.

√3/3 = 90√3 / d ( fazendo os meios pelo extremos - o crz credo kkk)

d√3 = 3.90√3 ( podemos cortar as raiz iguais em uma igualdade que envolve produto - multiplicação.

logo fica:

d = 3.90

d = 270 m

espero ter ajuda. abraços a todos.

Perguntas interessantes