Uma partícula que se move ao longo de uma reta tem velocidade igual a
metros por segundo após t segundos. Qual a distância que essa partícula percorrerá durante os primeiros t segundos?
Soluções para a tarefa
Respondido por
23
Para encontrar a função posição dessa partícula, teremos que integrar a função velocidade, e faremos isso por meio da integral por partes.
![\displaystyle \int t^2 e^{\displaystyle -t} \, dt \\ \\ \\ -t^2e^{\displaystyle -t} + \int 2t \cdot e^{\displaystyle -t} \, dt \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+\int 2e^{\displaystyle -t} \, dt) \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+2\int e^{\displaystyle -t} \, dt) \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+2(-e^{\displaystyle -t})) \displaystyle \int t^2 e^{\displaystyle -t} \, dt \\ \\ \\ -t^2e^{\displaystyle -t} + \int 2t \cdot e^{\displaystyle -t} \, dt \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+\int 2e^{\displaystyle -t} \, dt) \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+2\int e^{\displaystyle -t} \, dt) \\ \\ \\ -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}+2(-e^{\displaystyle -t}))](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Cint+t%5E2+e%5E%7B%5Cdisplaystyle+-t%7D+%5C%2C+dt+%5C%5C+%5C%5C+%5C%5C+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+%2B+%5Cint+2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D+%5C%2C+dt+%5C%5C+%5C%5C+%5C%5C+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+%2B+%28-2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D%2B%5Cint+2e%5E%7B%5Cdisplaystyle+-t%7D+%5C%2C+dt%29+%5C%5C+%5C%5C+%5C%5C+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+%2B+%28-2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D%2B2%5Cint+e%5E%7B%5Cdisplaystyle+-t%7D+%5C%2C+dt%29+%5C%5C+%5C%5C+%5C%5C+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+%2B+%28-2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D%2B2%28-e%5E%7B%5Cdisplaystyle+-t%7D%29%29)
![\displaystyle -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}-2e^{\displaystyle -t}) \\ \\ \\ -t^2e^{\displaystyle -t} - 2t \cdot e^{\displaystyle -t} - 2e^{\displaystyle -t} \\ \\ \\ \boxed{\boxed{-e^{\displaystyle -t} \cdot (t^{2}+2t+2) \, m }} \displaystyle -t^2e^{\displaystyle -t} + (-2t \cdot e^{\displaystyle -t}-2e^{\displaystyle -t}) \\ \\ \\ -t^2e^{\displaystyle -t} - 2t \cdot e^{\displaystyle -t} - 2e^{\displaystyle -t} \\ \\ \\ \boxed{\boxed{-e^{\displaystyle -t} \cdot (t^{2}+2t+2) \, m }}](https://tex.z-dn.net/?f=%5Cdisplaystyle+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+%2B+%28-2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D-2e%5E%7B%5Cdisplaystyle+-t%7D%29+%5C%5C+%5C%5C+%5C%5C+-t%5E2e%5E%7B%5Cdisplaystyle+-t%7D+-+2t+%5Ccdot+e%5E%7B%5Cdisplaystyle+-t%7D+-+2e%5E%7B%5Cdisplaystyle+-t%7D+%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cboxed%7B-e%5E%7B%5Cdisplaystyle+-t%7D+%5Ccdot+%28t%5E%7B2%7D%2B2t%2B2%29+%5C%2C+m+%7D%7D)
Perguntas interessantes