Física, perguntado por rafaelrsi108p36ej2, 11 meses atrás

Uma partícula desloca-se em uma trajetória retilínea obedecendo à seguinte função horária das posições: s = 4 - 5t + 1t² (no SI) Determine:
a) se o movimento é progressivo ou retrógrado nos instantes t = 1 s e t = 10 s.


b) em que instante a velocidade escalar se anula.

Soluções para a tarefa

Respondido por mariaandrademoura
2

Resposta:

HOME 

 

EXERCÍCIOS DE FÍSICA 

 

EXERCÍCIOS SOBRE MOVIMENTO UNIFORMEMENTE ACELERADO

EXERCÍCIOS SOBRE MOVIMENTO UNIFORMEMENTE ACELERADO

EXERCÍCIOS DE FÍSICA

Teste os seus conhecimentos: Faça exercícios sobre Movimento Uniformemente Acelerado e veja a resolução comentada.

Por Frederico Borges de Almeida  

Questão 1

Uma partícula move-se ao longo de uma reta orientada e sua posição varia com o tempo conforme a equação S = 6 – 8.t + 2.t²  (S.I) válida para t maior ou igual a 0.

a. Determine os instantes nos quais a partícula passa pela origem dos espaços.

b. Determine o instante e a posição correspondentes à inversão do sentido do movimento.

c. Determine a velocidade da partícula em t = 4s e a posição em que ela se encontra.

d. Determine a velocidade da partícula em S = 16m.

 

Ver Resposta

Questão 2

A equação horária do espaço referente ao movimento de um corpo é dada por: S = 5+ 40.t -2.t²

a. Em que instante (t) e em que posição (s) o corpo para?

b. Qual a distância percorrida pelo corpo desde de t = 0 até parar/?

c. Trace o gráfico da velocidade escalar em função de to = 0 até parar.

 

Ver Resposta

Questão 3

(UEL) Dois móveis A e B partem simultanemente de um mesmo ponto e deslocam-se numa mesma trajetória com as velocidades dadas no gráfico abaixo. Determine a distância que separa os móveis após 30s em metros.

Ver Resposta

Questão 4

A velocidade de um automóvel em movimento retilíneo está representada em função do tempo pelo gráfico abaixo.

Qual a velocidade média do automóvel entre os instantes t = 0,0h e t = 3,0h?

Ver Resposta

Resposta - Questão 1

a) S = 6 – 8.t + 2.t²

6 – 8.t +2.t² = 0

2.t² - 8.t + 6 = 0

t = [8 +/- √16]/4

t = 1s e t = 3s

b) b. S = 6 – 8.t + 2.t²

da equação acima temos: So = 6m    –    vo = -8m/s   -   a = 4m/s²

tendo v = vo + a.t e fazendo v = 0 encontraremos o instante da inversão do movimento.

0 = -8 + 4.t

t = 8/4

t = 2s

No instante t = 2s o móvel estará na posição S = 6 – 8.2 + 2.2² = 6m

c) Sendo v² = vo² + 2.a.Δs

Temos: v² = (-8)² + 2.4.10 = 64 + 80 = 144

v = (144)1/2

v = 12m/s

 

d) A partir da função horária da posição dada no enunciado temos: S0 = 6m, v0 = - 8 m/s, a = 4 m/s2. Ao chegar na posição 16 m o espaço percorrido terá sido 10 m (16 - 6 = 10). Aplicando estes dados à equação de Torricelli, temos:

v2 = v02 + 2.a.Δs

v2 = ( - 8)2 + 2.4.10

v2 = 64 + 80

v2 =144

v = 12 m/s

Ver a questão

Resposta - Questão 2

a)

So = 5m

vo = 40m/s

a = -4m/s²

v = vo + a.t

0 = 40 – 4.t

t = 40/4

t = 10s   -   instante em que o móvel para.

b)

 

S = 5+ 40.t -2.t²

S = 5 + 40.10 – 2.10²

S = 5 + 400 – 200

S = 205m

c. v = vo + a.t

v = 40 – 4.t

p/ to = 0  temos v = 40m/s

p/ t = 10s  temos v = 0

 

c) 

 

Ver a questão

Resposta - Questão 3

Para o móvel A

v = vo +a.t

20 = 0 + a.30

a = 20/30

a = 2/3m/s²

S = So + vo.t + a.t²/2

S =  0 + 0.30 + (2/3).30²/2

S = (2/3).900/2

S = (2/3).450

S = 900/3

S = 300m

Para o móvel B

S = So + v.t

S = 0 + (-10).30

S = -300m

A distância entre eles após 30s é dada por: d = [SA  - SB]

d = [300 – (-300)]

d = [300 + 300]

d = 600m

Obs.: Como A e B saíram do mesmo ponto, torna-se arbitrário estabelecer o valor de So; para facilitar na solução deste problema fora estabelecido So = 0 para ambos.

Ver a questão

Resposta - Questão 4

Δs entre os instantes t = 0,0h e t = 1,0h.

v = vo + a.t

90 = 0 +a.1

a = 90km/h²

Δs = + vo.t + a.t²/2

Δs = 0.1 + 90.1²/2

Δs = 45km

Δs entre os instantes t = 1,0h e t = 2,0h.

v = vo + a.t

60 = 90 + a.1

a = -30km/h²

Δs = + vo.t + a.t²/2

Δs = + 90.1 + (-30).1²/2

Δs = 75km

Δs entre os instantes t = 2h e t = 3h.

v = vo + a.t

90 = 60 + a.1

a = 30km/h²

Δs = + vo.t + a.t²/2

Δs = + 90.1 + 30.1²/2

Δs = 75km

Δs total (entre os instantes t = 0,0h e 3,0h)

Δs = 45 + 75 + 75

Δs = 195km

A velocidade média entre t = 0,0h e t = 3,0h é:

Vm = Δs/ Δt

Vm = 195/3

Vm = 65km/h

Ver a questão

ARTIGO RELACIONADO

Movimento acelerado, retardado e uniforme

Assista às nossas videoaulas

Vídeo 1

Versão mobile

Perguntas interessantes