Matemática, perguntado por uanderson00baia, 11 meses atrás

Uma loja vendeu 12 unidades de um produto a preços diferentes, devido ao fato de serem de fabricantes diferentes. Foram 4 unidades de R$ 11,00, 3 unidades de R$ 20,00 e 5 unidades de R$ 8,00. Calculando-se a média aritmética, a mediana e identificando-se a moda dos valores de venda, a soma dessas três medidas de tendência central é igual a :

Soluções para a tarefa

Respondido por Usuário anônimo
10

Explicação passo-a-passo:

• Média:

\sf M=\dfrac{4\cdot11+3\cdot20+5\cdot8}{12}

\sf M=\dfrac{44+60+40}{12}

\sf M=\dfrac{144}{12}

\sf M=12

• Mediana:

Colocando os valores em ordem crescente:

8, 8, 8, 8, 8, 11, 11, 11, 11, 20, 20, 20

A mediana é a média aritmética dos valores centrais

Os valores centrais são 11 e 11

A mediana é \sf \dfrac{11+11}{2}=\dfrac{22}{2}=11

• Moda:

É o valor que mais se repete

8, 8, 8, 8, 8, 11, 11, 11, 11, 20, 20, 20

A moda é 8

A soma procurada é 12 + 11 + 8 = 31

Perguntas interessantes