Uma loja de departamentos está vendendo uma geladeira de inox por R$ 6.000,00 à vista ou parcelada em 24 vezes iguais, sob a taxa de juros compostos de 1,5% a.m. Calcule o valor das parcelas:
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
C = 6 000
t = 24 m
i = 1,5 am ou 1.5 / 100 = 0,015
Em Juros Compostos precisamos achar o Coeficiente de Financiamento
0,015 / [ 1 - ( 1/ 0,015^24)]
0,015 / [ 1 - ( 1/1,429503 )]
NOTA : 1 : 1,429503 = 0,699543 >>>
0,015 / [ 1 - 0,699543 ]
0,015 / [ 0,300457 ]
nota >>> o resultado desta divisão é o coeficiente de financiamento procurado = 0,04992 >>>>>
aplicado em 6 000 temos
6000 * 0,04992 =299,50 >>>>>>resposta
O valor da parcela é igual a R$ 300,00.
Matemática Financeira
O pagamento de prestações postecipadas e iguais pode ser obtido a partir da seguinte equação:
P = VF . {[(1 + i)ⁿ . i] ÷ [(1 + i)ⁿ - 1]},
onde VF é o valor financiado, i é a taxa de juros mensal e n é o período do financiamento.
Segundo a questão, o valor financiado é de R$ 6 000,00, o período de financiamento é igual a 24 meses e a taxa de juros é de 1,5% ao mês.
Assim, substituindo os valores é possível obter o valor da prestação:
P = 6 000 * {[(1 + 0,015)²⁴ * 0,015] : [(1 + 0,015)²⁴ - 1]}
Resolvendo:
P = 6 000 * {[1,015²⁴ * 0,015] : [1,015²⁴ - 1]}
P = 6 000 * {[1,43 * 0,015] : [1,43 - 1]}
P = 6 000 * {0,02145 : 0,43}
P = 6 000 * 0,05
P = 300
Veja mais sobre Parcelas Postecipadas em: brainly.com.br/tarefa/50319052 #SPJ2