Uma indústria fabrica dois tipos de bicicletas, Masculina e Feminina, ambos as bicicletas utilizam as máquinas A e B no seu processo produtivo. Os tempos de processamento por centena dos dois produtos nas duas máquinas são: - A bicicleta Masculina precisa de 4 horas na máquina A e 5 horas na máquina B. - A bicicleta Feminina precisa de 5 horas na máquina A e 2 horas na máquina B. - No período a ser planejado, a máquina A tem 100 horas disponíveis e a máquina B 80 horas. A contribuição (lucro) na venda de 100 unidades da bicicleta Masculina é R$ 4.500,00 e na bicicleta Feminina R$ 2.250,00. Se a demanda do mercado tem condições de atender a toda a produção de bicicletas que a indústria fabricar, deseja-se construir um modelo de programação para encontrar quantas unidades de cada tipo de bicicleta devem ser fabricadas, para que a empresa maximize o seu lucro. No problema acima temos duas inequações e duas variáveis. A inequação que representa a utilização da máquina A é:
Soluções para a tarefa
Respondido por
6
Resposta:
4 X1 + 5 X2 ≤ 100
Explicação:
Corrigido no AVA.
Perguntas interessantes
História,
5 meses atrás
História,
5 meses atrás
Administração,
5 meses atrás
Português,
5 meses atrás
Inglês,
11 meses atrás