Matemática, perguntado por KarolineLis, 1 ano atrás

Uma função real é dada pela lei f(x)=x²-3x+5.Determine os valores de a, tais que:
f(a)-f(a+1)=1/3.f(2a).
Alguém pode me ajudar ?

Soluções para a tarefa

Respondido por 3478elc
17
f(x)=x²-3x+5

f(a)=(a)^2 - 3a + 5

f(a+1)=(a+1)^2 -3(a+1) + 5= a^2+2a+1-3a-3+5=a^2-a+6

f(2a)= (2a)^2-3(2a)+5= 4a^2-6a+5
1/3.f(2a)= 
 4a^2-6a+5
                      3

(a)^2 - 3a + 5 - (a^2-a+6) = 4a^2-6a+5    mmc = 3
                                        3
3(a)^2 - 9a + 15 - 3a^2 + 3a - 18= 4a^2-6a+5
- 6a - 3= 4a^2-6a+5
4a^2-6a+5+6a+3=0
4a^2 + 8 = 0
4(a^2 + 2) =0
a^2 + 2 = 0
a= + / - V-2   não existe raiz 



Respondido por gustavosoares335
1

Resposta:

a = 1/2 ou a = -1/2

Explicação passo-a-passo:

Primeiro vamos substituir as funções na nossa função principal:

f(x) = x^{2} - 3x +5\\

f(a)

f(a) = a^{2} - 3a + 5

f(a+1)

f(a+1) = (a+1)^{2}  - 3 (a+1) + 5

a^{2} +2a + 1 - 3a - 3 + 5 \\ Logo\\f(a+1) = a^{2} - a + 3

f(2a)

f(2a) = (2a)^{2} -3(2a) +5\\Logof(2a) = 4a^{2} -6a+5

Agora colocamos tudo isso na função:

f(a) - f(a+1) = \frac{1}{3} f(2a)\\\\a^{2} -3a +5 - (a^{2}-a+3) = \frac{1}{3} (4a^{2} -6a + 5)\\a^{2} -3a + 5 -a^{2}+a-3 = \frac{(4a^{2} -6a +5)}{3} \\-2a + 2 = \frac{(4a^{2} -6a +5)}{3} \\ \\-6a + 6 = 4a^{2} -6a + 5   -> Fiz MMC\\\\1 = 4a^{2} \\\frac{1}{4} = a^{2} \\a = \frac{1}{2} \\ou\\a =  \frac{-1}{2}

Perguntas interessantes