Matemática, perguntado por lauanabernarde, 1 ano atrás

Uma fábrica produz modelos de bicicletas com marcha e sem marcha, em 4 opções de cores: azul, vermelho, verde e preto. Quantas bicicletas diferentes é possível obter considerando essas cores e os modelos com marcha e sem marcha ?

Soluções para a tarefa

Respondido por giiandreotti
467
2 opções com marcha ou sem marcha
4 cores
basta multiplicar 2 * 4
São 8 modelos.

Para tirar a prova:
1 azul com marcha
2 vermelho com marcha
3 verde com marcha
4 preto com marcha
5 azul sem marcha
6 vermelho sem marcha
7 verde sem marcha
8 preto sem marcha
Respondido por leticiaamattos
17

É possível formar 16 modelos de bicicletas distintas.

Vamos à explicação!

Nessa questão iremos trabalhar com o princípio fundamental da contagem.

Princípio fundamental da contagem

O total de possibilidades de bicicletas montadas será a multiplicação entre as opções de cada modelo (com ou sem marcha).

Da seguinte forma:

total de possibilidades = total com marcha x total sem marcha

O enunciado diz que:

  • Com marcha = 4 possibilidades
  • Sem marcha = 4 possibilidades

Realizando a multiplicação entre esses dois fatores, encontramos o número total de possibilidades:

total de possibilidades = total com marcha x total sem marcha

total de possibilidades = 4 x 4

total de possibilidades = 16

Encontramos que essa empresa pode produzir 16 modelos distintos de bicicletas.

Espero ter ajudado!

Veja mais sobre o princípio fundamental da contagem:

https://brainly.com.br/tarefa/14695867

Anexos:
Perguntas interessantes