Uma escada de 13,0 m de comprimento
encontra-se com a extremidade superior apoiada na
parede vertical de um edifício e a parte inferior apoiada no
piso horizontal desse mesmo edifício, a uma distância de
5,0 m da parede. Se o topo da escada deslizar 1,0 m para
baixo, o valor que mais se aproxima de quanto a parte
inferior escorregará é
preciso da explicação + cálculos
Soluções para a tarefa
Respondido por
2
Calculando a que altura na parede a escada estará inicialmente:
13² = 5² + x²
x² = 169 - 25
x² = 144
x = 12.
---Ela escorregando formará um outro triângulo cujos lados são 13, (12 - 1 = 11) e (5 + x)
---Reaplicando o teroema de pitágoras:
13² = 11² + (5 + x)²
169 = 121 + 25 + 10x + x²
x² + 10x + 146 - 169 = 0
x² + 10x - 23 = 0
coeficientes:
a = 1
b = 10
c = - 23
delta = b² - 4*a*c
delta = 10² - 4*1*(-23)
delta = 100 + 92
delta = 192
13² = 5² + x²
x² = 169 - 25
x² = 144
x = 12.
---Ela escorregando formará um outro triângulo cujos lados são 13, (12 - 1 = 11) e (5 + x)
---Reaplicando o teroema de pitágoras:
13² = 11² + (5 + x)²
169 = 121 + 25 + 10x + x²
x² + 10x + 146 - 169 = 0
x² + 10x - 23 = 0
coeficientes:
a = 1
b = 10
c = - 23
delta = b² - 4*a*c
delta = 10² - 4*1*(-23)
delta = 100 + 92
delta = 192
Perguntas interessantes
Português,
10 meses atrás
Matemática,
10 meses atrás
Pedagogia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás