Contabilidade, perguntado por grazielagps, 1 ano atrás

Uma empresa especializada em controlar carros em estacionamentos recebe em média 10 carros por minuto. Qual a probabilidade de chegar mais 80 carros nos próximos 10 minutos?
a 97,7%
b 50%
c 2,3%
d 85,5%

Soluções para a tarefa

Respondido por lucelialuisa
0

Olá!

Podemos resolver esse problema através da Distribuição de Poisson, descrita pela equação:

f(k;\lambda) = \frac{e^{-\lambda}\lambda^{k}}{k!}

onde λ é número esperado de ocorrências e k é o número possível de ocorrências.

Nesse caso, temos que em 1 minuto o estacionamento recebe em média 10 carros. Portanto, em 10 minutos, receberá em média 100 carros (λ).

Assim, a probabilidade de chegarem mais de 80 carros (k) nesses mesmos 10 minutos será:

P(k>80) = 1 - (P\leq 80)

P(k>80) = 1 - [\frac{e^{-100}.100^{80}}{80!}+\frac{e^{-100}.100^{79}}{79!}+\frac{e^{-100}.100^{78}}{78!}+\frac{e^{-100}.100^{77}}{77!}+...+\frac{e^{-100}.100^{0}}{0!}]

P(k>80) = 1 - 2,25x10^{-2}

P(k>80) = 0,977

Assim, a probabilidade de chegar mais de 80 carros será de 97,7%, sendo a alternativa A a correta.

Espero ter ajudado!

OBS: Na somatória, você irá perceber que os termos irão ficando cada vez menores, sendo apenas relevante os 4 primeiros. Assim, não é necessário calcular para todos os termos (80 a 0).

Perguntas interessantes