Matemática, perguntado por isaquielcelestino75, 8 meses atrás

Uma determinada empresa colectou dados relativos à produção de 12 lotes de um tipo especial de rolamento. O volume de produção e o custo de produção de cada lote apresentam-se na tabela:
Lote Volume (unidades) Custo (Mts)
1 1500 3100
2 800 1900
3 2600 4200
4 1000 2300
5 600 1200
6 2800 4900
7 1200 2800
8 900 2100
9 400 1400
10 1300 2400
11 1200 2400
12 2000 3800
b) Analise a correlação existente entre volume e custo de produção.

c) Calcule o coeficiente de correlação.

Soluções para a tarefa

Respondido por smith30
2

Resposta:

Initial Cost 8 8(100) = 800 8(150) = 1200 8(140) =1120 2. Traffic 10 10(40) = 400 10(40) = 400 10(30) = 300 3. Maintenance 6 6(20) = 120 6(25) = 150 6(18) = 108 4. Dock space 6 6(25) = 150 6(10) = 60 6(12) = 72 5. Neighborhood 4 4(12) = 48 4(8) = 32 4(15) = 60 1518 1842 1660 On the basis of composite score, .East # 2 is best.

Image of page 5

Chapter 08 - Location Planning and Analysis 8-6 Location (a) Location (b) 11. Factor A B C Weight A B C 1. Business Services 9 5 5 2/9 18/9 10/9 10/9 2. Community Services 7 6 7 1/9 7/9 6/9 7/9 3. Real Estate Cost 3 8 7 1/9 3/9 8/9 7/9 4. Construction Costs 5 6 5 2/9 10/9 12/9 10/9 5. Cost of Living 4 7 8 1/9 4/9 7/9 8/9 6. Taxes 5 5 5 1/9 5/9 5/9 4/9 7. Transportation 6 7 8 1/9 6/9 7/9 8/9 Total 39 44 45 1.0 53/9 55/9 54/9 Each factor has a weight of 1/7. a. Composite Scores 39 44 45 7 7 7 B or C is the best and A is least desirable. b. Business Services and Construction Costs both have a weight of 2/9; the other factors each have a weight of 1/9. 5 x + 2 x + 2 x = 1 x = 1/9 c. Composite Scores A B C 53/9 55/9 54/9 B is the best followed by C and then A. 12. Location x y A 3 7 B 8 2 C 4 6 D 4 1 E 6 4 Totals 25 20 x = xi= 25 = 5.0 y = yi= 20 = 4.0 n 5 n 5 Hence, the center of gravity is at (5,4) and therefore the optimal location. 13. Location x y 0 A 5 7 15 B 6 9 20 C 3 9 25 D 9 4 30 Totals 23 29 90

Image of page 6

Chapter 08 - Location Planning and Analysis 8-7 x = xiQi= 5(15) + 6(20) + 3(25) + 9(30) = 540 = 6.0 i 90 y = xiQi= 7(15) + 9(20) + 9(25) + 4(30) = 630 = 7.0 i 90 The center of gravity and optimal location is (6,7). Q90 Q90 14. Location Volume in x y Tons Per Day 10 5 26 4 1 9 4 7 25 2 6 30 8 7 40 28 26 130 x = xiQi= 10(26) + 4(9) + 4 (25) + 2(30) + 8(40) Qi 130 x = 776 = 5.97 130 y = yiQi= 5(26) + 1(9) + 7(25) + 6(30) + 7(40) Qi 130 y = 774 = 5.95 130 Hence, the center of gravity and optimal location. 15. Destination x, y Coordinates Quantity xQ yQ D1 D2 D3 D4 D5 1,2 2,4 3,1 4,2 5,3 900 300 700 600 1,200 900 600 2,100 2,400 6,000 1,800 1,200 700 1,200 3,600 3,700 12,000 8,500 x = 12,000 3,700 = 3.24 y = 8,500 3,700 = 2.30 Plotting the coordinates on the graph given in the problem reveals that L2 is closest to the center of gravity.

Image of page 7

Perguntas interessantes