Matemática, perguntado por Danizinha02, 1 ano atrás

Uma das raízes da equação ax-x^2=0 é a médoa artimética das raizes da equação x^2-6x+4=0. O valor de a é:
a)3
b)6
c)3-√5
d)3+√5

Soluções para a tarefa

Respondido por vailuquinha
48
A soma entre as raízes de uma equação pode ser calculada com a seguinte relação:
\boxed{x'+x''= - \frac{b}{a}}

Aplicando essa relação citada acima na equação x²-6x+4=0, teremos que a soma entre as duas raízes será:
x'+x''= - (\frac{-6}{1})  \\  \\ 
\boxed{x'+x''= +6}

Como queremos encontrar a média aritmética das duas raízes, dividi-se por dois:
M_a=  \frac{6}{2}  \\  \\ 
\boxed{M_a= 3}
 
O exercício informa que esta média aritmética encontrada acima é uma das raízes da equação ax-x²=0, então podemos substituir no lugar de 'x' o 3 a fim de descobrir o valor de 'a'. Observe:
 ax-x^2= 0  \\  \\ 
a \cdot 3 - (3)^2= 0  \\  \\ 
3a-9= 0  \\  \\ 
3a= 9  \\  \\ 
a=  \frac{9}{3}  \\  \\ 
\boxed{a= 3}

Usuário anônimo: ótimo! valeu pela força! abraços!
vailuquinha: ;D
Perguntas interessantes