Matemática, perguntado por gabrielferreira8934, 11 meses atrás

Uma costureira deseja cortar um tecido de 7,20 m de comprimento em partes iguais quantos centímetros tira cada pedaço ?

Soluções para a tarefa

Respondido por mogli2
0

\to \boxed{\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right}\to X\left \{ \begin{matrix} 2x+3x=50 &  \\ 2x+6x=0 &  \end{matrix} \right.Delta = \\onde \ \Delta=b^2-4\cdot a\cdot c\\Baskara = x = \dfrac{-b \pm \sqrt{\ \Delta}}{2.a}\\x_{1}= \times 12\\x_{2}= \times 2x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}x\displaystyle x = \dfrac{-b \pm \sqrt{b^2-4ac}}{2a}

\left ( \dfrac{1}{2} \right )  \left \{ \begin{matrix}  	\mathbf{x} \cdot \mathbf{y} = 0 &  \\  	\mathbf{x} \cdot \mathbf{y} = 0 &  \end{matrix} \right.

\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right.

left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right

\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right

\begin{matrix} \underbrace{ a+b+\cdots+z } \\ 26 \end{matrix}

 \big\{ \Big\{ \bigg\{ \Bigg\{ \big] \Big] \bigg] \Bigg]\big\{ \Big\{ \bigg\{ \Bigg\{ \big] \Big] \bigg] \Bigg]

\left . \dfrac{A}{B} \right \} \to X \to X

\to  \to \text{texto1} \times 100 \text{texto2}

\to \text{Rspost}   \mbox{Rspost} \boxed{x_{1,2}=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}


\boxed{\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right}

Sistema \to \boxed{\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right}

\text{Sistema} \to \boxed{\left \{ \begin{matrix} \mathbf{x} \cdot \mathbf{y} = 0&\\ \mathbf{x} \cdot \mathbf{y} = 0& \end{matrix} \right}

\begin{minipage}{3in}\begin{align*}\intertext{text;} 2x+3y=50\\ 2x+3y=50\\\intertext{text}x= 2x+3y=50\end{align*} \end{minipage} \forall x\not\in\varnothing\subseteq A\cap B\cup \exists \{x,y\} \setminus\times C \nsubseteq \sqsubseteq \nsupseteq \preceq \succeq

a^{2+2} \begin{bmatrix}

x\in\mathbb{N}\subset\mathbb{Z}\subset\mathbb{R}\sub\mathbb{C}  \boldsymbol{\alpha}+\boldsymbol{\beta}+\boldsymbol{\gamma}

\begin{center}texto\end{center}  

\begin{flushleft}texto\end{flushleft}

\textbf{negrito} \textsc{small caps}\texttt{letra de máquina} \textrm{romano}

{\Huge{tamanho}}

\begin{itemize}\item primeiro item\item segundo item\item terceiro item\end{itemize}

\dfrac{a+b}{2}

\begin{eqnarray*}\overline{\overline{(\overline{A} \cdot B)} +\overline{(A + \overline{D})}} &=& \\\overline{\overline{(\overline{A} \cdot B)}}\cdot \overline{\overline{(A + \overline{D})}} &=& \\(\overline{A} \cdot B) \cdot (A + \overline{D}) &=& \\(\overline{A} \cdot B \cdot A) \cdot(\overline{A} \cdot \overline{B} \cdot \overline{D}) &=&\overline{A} \cdot B \cdot \overline{D}\end{eqnarray*}

\underline{respota}

\bf x = \dfrac{-b \pm \sqrt{\ \Delta}}{2.a}    $$1 - 3x^4 \left\{3 + \left[ \frac{1}{x^2 + x + 1} -\sqrt{\left( \frac{x^6 + 7}{x^3 + 1} \right)^5} \right]\right\} $$

$$\Biggl( \biggl( \Bigl( \bigl( ( X ) \bigr) \Bigr) \biggr) \Biggr)$$\\$$\Biggl[ \biggl[ \Bigl[ \bigl[ [ X ] \bigr] \Bigr] \biggr] \Biggr]$$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$


Perguntas interessantes