uma circunferência tem a equação x²+y²+3x-4y+2=0, determine o seu centro e o seu Raio.
Soluções para a tarefa
Respondido por
1
Resposta:
O centro é (-3/2, 2).
E o raiz é √17/2.
Explicação passo-a-passo:
x²+3x+y²-4y=-2
x²+3x+9/4+y²-4y+4=-2+9/4+4
(x+3/2)²+(y-2)²=(-8+9+16)/4
(x+3/2)²+(y-2)²=17/4
A fórmula da circunferência é:
(x-a)²+(y-b)²=r²
Logo:
O centro é (-3/2, 2).
E o raiz é √17/2.
Respondido por
2
Resposta:
x²+y²+3x-4y+2=0
x²+3x+y²-4y+2=0
x²+3x+(3/2)² -(3/2)² +y²-4y+2²-2²+2=0
(x+3/2)²-9/4 +(y-2)²-4+2=0
(x+3/2)² +(y-2)²-9/2-4+2=0
(x+3/2)² +(y-2)²-9/4-2=0
(x+3/2)² +(y-2)²-9/4-8/4=0
(x+3/2)² +(y-2)²-17/4=0
(x+3/2)² +(y-2)²=17/4
(x-a)²+(y-b)²=r² é a equação reduzida da circunferência
(a,b) é o centro e r é o raio
centro=(-3/2 ; 2) e raio = √(17/4) =(√17)/2 unid. linear
Perguntas interessantes
História,
8 meses atrás
História,
8 meses atrás
Matemática,
11 meses atrás
Química,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás