Matemática, perguntado por mariananda6057, 1 ano atrás

uma caixa contém certa quantidade de lâmpadas. ao retirá-las de 3 em 3 ou de 5 em 5, sobram 2 lâmpadas na caixa. entretanto, se as lâmpadas forem removidas de 7 em 7, sobrará uma única lâmpada. assinale a alternativa correspondente à quantidade de lâmpadas que há na caixa, sabendo que esta comporta um máximo de 100 lâmpadas.? alguém sabe? por favor ;)

Soluções para a tarefa

Respondido por albertrieben
0
Boa tarde Maria

N = 3a + 2 = 3*30 + 2 = 92
N = 5b + 2 = 5*18 + 2 = 92
N = 7c + 1 = 7*13 + 1 = 92

Respondido por cesardobrasil
0

Resposta:

92

Explicação passo-a-passo:

Vamos chamar as retiradas de r, s e w: e de T o total de lâmpadas.

Precisamos calcular os múltiplos de 3, 5 e de 7, separando um múltiplo menor do que 100 que sirva nas três equações abaixo:

De 3 em 3: 3 . r + 2 = Total

De 5 em 5: 5 . s + 2 = Total

De 7 em 7: 7 . w + 1 = Total

Primeiramente, vamos calcular o valor de w, sem que o total ultrapasse 100:

7 . 14 + 1 = 99, mas 3 . r + 2 = 99 vai dar que r = 32,333... (não convém)

7 . 13 + 1 = 92, e 3 . r + 2 = 92 vai dar r = 30 e

5 . s + 2 = 92 vai dar s = 18.

Serão 92 lâmpadas.

Perguntas interessantes