Física, perguntado por 21luiseduardo2pbf4u3, 10 meses atrás

Uma bola de futebol é lançada obliquamente com velocidade inicial de módulo v0 = 30 m/s, formando um ângulo θ = 60° com a horizontal. Despreze a resistência do ar e considere g = 10 m/s2. Determine o alcance horizontal da bola se: sen θ = 0,8 e cos θ = 0,5.
URGENTEEEEEEEEEEEEE

Soluções para a tarefa

Respondido por MSGamgee85
10

Resposta:

72 m

Explicação:

  • Essa tarefa é sobre lançamento oblíquo.
  • Para resolver problemas desse tipo, dividimos o movimento em duas direções:
  • horizontal: que segue as regras do movimento retilíneo uniforme (MRU): velocidade constante, não tem aceleração;
  • vertical: que obedece as regras do movimento retilíneo uniformemente variado (MRUV): velocidade muda conforme o tempo passa, aceleração constante que chamamos de gravidade.

Sem mais delongas, bora para a solução!

Solução:

1. Vou determinar as componentes da velocidade inicial:

  • Horizontal:

\sf{v_{ox}=v_o\cdot cos\,60^o}

\sf{v_{ox}=30\cdot(0,5)}

\therefore \boxed{\sf{v_{ox}=15\,m/s}}

  • Vertical:

\sf{v_{oy}=v_o\cdot sen\,60^o}

\sf{v_{oy}=30\cdot(0,8)}

\therefore \boxed{\sf{v_{oy}=24\,m/s}}

2. O movimento horizontal é um MRU, logo a distância percorrida é o que chamamos de alcance. Podemos escrever:

\sf{x=v_x\cdot t}\\\\\boxed{\sf{x=v_{ox}\cdot t}}\qquad \sf{(1)}

3. O movimento vertical é um MRUV. Com a função da posição podemos determinar o tempo que a bola fica no ar, isto é, o tempo que ela leva para subir e descer. Assim:

\sf{y=y_o+v_{oy}t-\dfrac{gt^2}{2}}\\\\\sf{0=0+24t-\dfrac{10t^2}{2}}\\\\\sf{24t-5t^2=0}\\\\\sf{t\cdot(24-5t)=0}\\\\\therefore \sf{t=0} \qquad ou\\\\\sf{24-5t=0}\\\\\sf{5t=24}\\\\\therefore\boxed{\sf{t=4,8\,s}}}

4. Substituindo na equação (1), obtemos:

\sf{x=v_{ox}\cdot t}\\\\\sf{x=15\cdot(4,8)}\\\\\therefore \boxed{\sf{x=72\,m}}

Conclusão: O alcance horizontal da bola é x = 72 m.

Continue aprendendo com o link abaixo:

Lançamento vertical

https://brainly.com.br/tarefa/29553121

Bons estudos! : )

Equipe Brainly

Anexos:

juliasimes17: oiii
juliasimes17: pode me ajudar em uma questão de parecida com essa por favor???
juliasimes17: é muito importante
MSGamgee85: Olá. Coloque a tarefa no seu perfil. Talvez eu possa te ajudar. ^_^
juliasimes17: eu coloquei
juliasimes17: tô super confusa com ela ainda
juliasimes17: por favor
Perguntas interessantes