Um triângulo retângulo tem um angulo agudo α tal que tg α = √5/2. Calcule os valores de sen α e cos β.
Soluções para a tarefa
Respondido por
9
Segundo as relações trigonométricas:
sec²x = 1 + tg²x
sec²x = 1 + (√5/2)²
sec²x = 1 + 5/4 = 9/4
secx = 3/2
sec x = 1/cosx
cos x = 2/3
Como cos²x+sen²x = 1
(2/3)² + sen² x = 1
sen²x = 1 - 4/9
sen²x = 5/9
senx = √5/3
sec²x = 1 + tg²x
sec²x = 1 + (√5/2)²
sec²x = 1 + 5/4 = 9/4
secx = 3/2
sec x = 1/cosx
cos x = 2/3
Como cos²x+sen²x = 1
(2/3)² + sen² x = 1
sen²x = 1 - 4/9
sen²x = 5/9
senx = √5/3
51nina:
Não entendi
Respondido por
5
Pela relação fundamental da trigonometria:
![\sin^2\alpha+\cos^2\alpha=1\\\\\dfrac{\sin^2\alpha+\cos^2\alpha}{\cos\alpha}=\dfrac{1}{\cos^2\alpha}\\\\\tan^2\alpha+1=\dfrac{1}{\cos^2\alpha} \sin^2\alpha+\cos^2\alpha=1\\\\\dfrac{\sin^2\alpha+\cos^2\alpha}{\cos\alpha}=\dfrac{1}{\cos^2\alpha}\\\\\tan^2\alpha+1=\dfrac{1}{\cos^2\alpha}](https://tex.z-dn.net/?f=%5Csin%5E2%5Calpha%2B%5Ccos%5E2%5Calpha%3D1%5C%5C%5C%5C%5Cdfrac%7B%5Csin%5E2%5Calpha%2B%5Ccos%5E2%5Calpha%7D%7B%5Ccos%5Calpha%7D%3D%5Cdfrac%7B1%7D%7B%5Ccos%5E2%5Calpha%7D%5C%5C%5C%5C%5Ctan%5E2%5Calpha%2B1%3D%5Cdfrac%7B1%7D%7B%5Ccos%5E2%5Calpha%7D)
Através desta última relação podemos calcular o cosseno de α sabendo a tangente de α.
![\tan^2\alpha+1=\dfrac{1}{\cos^2\alpha}\\\\\left(\dfrac{\sqrt{5}}{2}\right)^2+1=\dfrac{1}{\cos^2\alpha}\\\\\dfrac{5}{4}+1=\dfrac{1}{cos^2\alpha}\\\\\cos^2\alpha=\dfrac{1}{\dfrac{5}{4}+1}\\\\\cos^2\alpha=\dfrac{1}{\dfrac{5+4}{4}}\\\\\cos^2\alpha=\dfrac{4}{9}\\\\\boxed{\boxed{\cos\alpha=\dfrac{2}{3}}} \tan^2\alpha+1=\dfrac{1}{\cos^2\alpha}\\\\\left(\dfrac{\sqrt{5}}{2}\right)^2+1=\dfrac{1}{\cos^2\alpha}\\\\\dfrac{5}{4}+1=\dfrac{1}{cos^2\alpha}\\\\\cos^2\alpha=\dfrac{1}{\dfrac{5}{4}+1}\\\\\cos^2\alpha=\dfrac{1}{\dfrac{5+4}{4}}\\\\\cos^2\alpha=\dfrac{4}{9}\\\\\boxed{\boxed{\cos\alpha=\dfrac{2}{3}}}](https://tex.z-dn.net/?f=%5Ctan%5E2%5Calpha%2B1%3D%5Cdfrac%7B1%7D%7B%5Ccos%5E2%5Calpha%7D%5C%5C%5C%5C%5Cleft%28%5Cdfrac%7B%5Csqrt%7B5%7D%7D%7B2%7D%5Cright%29%5E2%2B1%3D%5Cdfrac%7B1%7D%7B%5Ccos%5E2%5Calpha%7D%5C%5C%5C%5C%5Cdfrac%7B5%7D%7B4%7D%2B1%3D%5Cdfrac%7B1%7D%7Bcos%5E2%5Calpha%7D%5C%5C%5C%5C%5Ccos%5E2%5Calpha%3D%5Cdfrac%7B1%7D%7B%5Cdfrac%7B5%7D%7B4%7D%2B1%7D%5C%5C%5C%5C%5Ccos%5E2%5Calpha%3D%5Cdfrac%7B1%7D%7B%5Cdfrac%7B5%2B4%7D%7B4%7D%7D%5C%5C%5C%5C%5Ccos%5E2%5Calpha%3D%5Cdfrac%7B4%7D%7B9%7D%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B%5Ccos%5Calpha%3D%5Cdfrac%7B2%7D%7B3%7D%7D%7D)
Pela própria relação fundamental da trigonometria, calcularemos o seno de α.
Através desta última relação podemos calcular o cosseno de α sabendo a tangente de α.
Pela própria relação fundamental da trigonometria, calcularemos o seno de α.
Perguntas interessantes