Um triangulo abc tem seus verticies nos pontos a(0,-5) b(1,2) c(2,3). Calcule a distancia de AB , BC, AC
Soluções para a tarefa
Respondido por
1
A( 0 , - 5 ) B( 1 , 2 ) C( 2 , 3 )
xa, ya xb,yb xc,yc
dAB = √(xb - xa)² + (yb - ya)²
dAB = √(1 - 0)² + (2 +5)²
dAB = √ 1² + 7²
dAB = √1 + 49
dAB =√50
dAB = √25.2
dAB = 5√2
dBC = √(xc - xb)² + (yc -yb)²
dBC = √( 2 - 1)² + (3 - 2)²
dBC = √(1)² + ( 1)²
dBC = √1 + 1
dBC = √2
dAC =√(xc - xa)² + ( yc - ya)²
dAC = √(2 - 0)² + (3 + 5)²
dAC = √2² + 8²
dAB = √4 + 64
dAC = √68
dAC = √4.17
dAC = 2√17
xa, ya xb,yb xc,yc
dAB = √(xb - xa)² + (yb - ya)²
dAB = √(1 - 0)² + (2 +5)²
dAB = √ 1² + 7²
dAB = √1 + 49
dAB =√50
dAB = √25.2
dAB = 5√2
dBC = √(xc - xb)² + (yc -yb)²
dBC = √( 2 - 1)² + (3 - 2)²
dBC = √(1)² + ( 1)²
dBC = √1 + 1
dBC = √2
dAC =√(xc - xa)² + ( yc - ya)²
dAC = √(2 - 0)² + (3 + 5)²
dAC = √2² + 8²
dAB = √4 + 64
dAC = √68
dAC = √4.17
dAC = 2√17
Respondido por
1
Entâo começamos por : Dados: A( 0 , - 5 ) B( 1 , 2 ) C( 2 , 3 )
xa, ya xb,yb xc,yc
dAB = √(xb - xa)² + (yb - ya)²
dAB = √(1 - 0)² + (2 +5)²
dAB = √ 1² + 7²
dAB = √1 + 49
dAB =√50
dAB = √25.2
dAB = 5√2
dBC = √(xc - xb)² + (yc -yb)²
dBC = √( 2 - 1)² + (3 - 2)²
dBC = √(1)² + ( 1)²
dBC = √1 + 1
dBC = √2
dAC =√(xc - xa)² + ( yc - ya)²
dAC = √(2 - 0)² + (3 + 5)²
dAC = √2² + 8²
dAB = √4 + 64
dAC = √68
dAC = √4.17
dAC = 2√17
xa, ya xb,yb xc,yc
dAB = √(xb - xa)² + (yb - ya)²
dAB = √(1 - 0)² + (2 +5)²
dAB = √ 1² + 7²
dAB = √1 + 49
dAB =√50
dAB = √25.2
dAB = 5√2
dBC = √(xc - xb)² + (yc -yb)²
dBC = √( 2 - 1)² + (3 - 2)²
dBC = √(1)² + ( 1)²
dBC = √1 + 1
dBC = √2
dAC =√(xc - xa)² + ( yc - ya)²
dAC = √(2 - 0)² + (3 + 5)²
dAC = √2² + 8²
dAB = √4 + 64
dAC = √68
dAC = √4.17
dAC = 2√17
Perguntas interessantes