Um trem de 200 m de comprimento desloca-se a 60 km/h e demora 14,9s para atravessar uma ponte. Qual é o comprimento da ponte?
Soluções para a tarefa
Resposta:
Aproximadamente 48,33m
Explicação:
Tem-se que o movimento se inicia a partir do momento em que o trem começa a ultrapassar a ponte
So = 0
E finaliza quando ele ultrapassa a ponte. Para ultrapassar a ponte totalmente, ele deve percorrer a distância igual ao seu tamanho + o tamanho da ponte
Sf = x + 200m
Colocando na equação horária do espaço (daria no mesmo se fizesse o ΔS/Δt, considerando ΔS = x + 200):
Sf = So + V * t
x + 200 = V * 14,9
Como a velocidade está em km/h e o restante das grandezas em m e em s, é necessário transformar essa velocidade em m/s
Vm/s = Vkm/h / 3,6
Vm/s = 60 / 3,6
Vm/s ≅ 16,67 m/s = 16 + (2/3) = (48 + 2)/3 = 50/3 m/s (deixei o resultado em fração para facilitar a conta e dar um valor mais preciso)
x + 200 = 50 * 14,9/3
x + 200 = 745/3
x + 200 = 248 + (1/3)
x = 248 - 200 + 1/3
x = 48 + (1/3) ≅ 48,33m