Matemática, perguntado por biadolles, 5 meses atrás

Um topógrafo está em cima de um prédio de 10,5m de altura e avista o topo e a base de um segundo prédio sob angulo de 75° como mostra a figura a baixo. Sabendo-se que a distância entre os prédios é de 12 metros e que o teodolito está a 1,5m de distância do pé do topógrafo.
Podemos afirmar que a altura do prédio maior é

Anexos:

Soluções para a tarefa

Respondido por auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{tg\:\Theta = \dfrac{cateto\:oposto}{cateto\:adjacente}}

\mathsf{tg\:30\textdegree = \dfrac{x}{12}}

\mathsf{\dfrac{\sqrt{3}}{3} = \dfrac{x}{12}}

\mathsf{x = 4\sqrt{3}}

\mathsf{h = 12 + 4\sqrt{3}}

\boxed{\boxed{\mathsf{h = 4(3 + \sqrt{3})\:m}}}\leftarrow\textsf{letra E}

Anexos:
Perguntas interessantes