ENEM, perguntado por pedroscax6171, 5 meses atrás

Um tecnico de um time de voleibol possui a sua disposição

Soluções para a tarefa

Respondido por glaynascimento
1

Utilizando a fórmula de combinação simples, vemos que o técnico tem 5.005 maneiras de escolher/combinar/escalar seu time.

Combinação simples:

Um time de voleibol é composto por 6 jogadores.

O técnico terá que escolher 6 jogadores. Nesse caso, a ordem de escolha não importa.

Em uma questão, quando pede para escolher ou combinar algo, no qual a ordem não importa e não temos repetição, podemos usar combinação simples para resolver.

A fórmula de combinação simples é:

C_{n,k} = \frac{n!}{k!(n-k)!}\\ \\

Na questão dada, n = 15 e k = 6, substituindo, teremos:

C_{15,6}=\frac{15!}{6!(15-6)!} \\\\C_{15.6}=\frac{15!}{6!\times9!}\\ \\C_{15,6} = \frac{15\times14\times13\times12\times11\times10\times9!}{6!\times9!}\\ \\C_{15,6} = \frac{15\times14\times13\times12\times11\times10}{6\times5\times4\times3\times2\times1}\\ \\C_{15,6} = \frac{3.603.600}{720} \\\\C_{15,6} = 5.005

Logo, o técnico terá 5.005 maneiras de escalar seu time.

A pergunta completa é: "Um técnico de um time de voleibol possui a sua disposição 15 jogadores que podem jogar em qualquer posição. De quantas maneira ele poderá escalar seu time?"

Saiba mais sobre combinação simples em: https://brainly.com.br/tarefa/1435136

#SPJ4

Perguntas interessantes