Matemática, perguntado por victoriadferreira32, 5 meses atrás

um secador de cabelo custa r$ 23 a mais que uma chapinha de alisamento se os dois juntos custam r$ 245 Qual o preço de cada um?​

Soluções para a tarefa

Respondido por Lufe63
0

Resposta:

O secador de cabelos custa R$ 134,00 e a chapinha de alisamento, R$ 111,00.

Explicação passo-a-passo:

Vamos identificar os preços dos produtos por variáveis ou incógnitas:

  • preço do secador de cabelos: x
  • preço da chapinha de alisamento:

Os dois produtos custam R$ 245,00. Esta é a expressão algébrica: x + y = 245 (Equação 1).

O secador de cabelos custa R$ 23,00 a mais que a chapinha de alisamento. Esta é a expressão algébrica: x = 23 + y (Equação 2).

Estamos diante de um sistema linear de duas equações com duas incógnitas. Vamos usar o método da substituição.

{x + y = 245 (1)

{x = 23 + y (2)

Vamos substituir o valor de x da Equação 1 pelo valor de x da Equação 2:

23 + y + y = 245

23 + 2y = 245

2y = 245 - 23

2y = 222

y = 222 ÷ 2

y = 111

O preço da chapinha de alisamento é R$ 111,00.

Agora, vamos ao encontro do preço do secador de cabelos, substituindo-se o valor de y na Equação 1:

x + 111 = 245

x = 245 - 111

x = 134

O preço do secador de cabelos é R$ 134,00.

Resposta: O secador de cabelos custa R$ 134,00 e a chapinha de alisamento, R$ 111,00.

Ambos, somados, resultam R$ 245,00:

R$ 134,00 + R$ 111,00 = R$ 245,00

O secador de cabelos custa R$ 23,00 a mais que a chapinha de alisamento:

R$ 134,00 = R$ 111,00 + R$ 23,00

Respondido por Indalecio
0

Resposta:

Explicação passo a passo:

x+x+23=245

x+x=245-23

2x=222

x=222/2

x=R$111,00 (chapinha)

111+23=

R$134,00 (secador)

Perguntas interessantes