Matemática, perguntado por gui0221, 1 ano atrás

um restaurante vende 1000 pratos a 18,00 por semana. quando o restaurante oferece um desconto de 5, passa a vender 1500 pratos por semana.

a) qual deve ser o valor do desconto, para que a receita semanal seja maximizada?
b) determine a receita maxima.
c) represente graficamente a função receita acima.

1 - determine a função receita R, em função do desconto x
2 - calcule o desconto que maximiza a receita
3 - use o desconto encontrado para determinar a receita maxima
4 - monte o grafico da receita em função do desconto explicitando o ponto de maximo.

Soluções para a tarefa

Respondido por adjemir
2

Vamos lá.

Guio, esta mesma questão já tivemos oportunidade de responder para um outro usuário (para a Mariana). Então vamos apenas transcrever a resposta que demos para a Mariana. Lá vai a transcrição:

"Vamos lá.

Veja, Mariana, que a questão é mais ou menos simples. Vamos tentar razer tudo passo a passo para um melhor entendimento.

i) Note que o restaurante Exatus vende 1.000 pratos por semana a R$ 18,00 cada prato. Quando o restaurante dá um desconto de R$ 5,00 passa a vender 1.500 pratos (ou seja 500 pratos a mais) por semana.

ii) Veja que questões desse tipo costumam ser resolvidas da seguinte forma:

(18 - 5x)*(1.000+500x) ---- aqui está sendo informado que a cada redução "x" de R$ 5,00 no preço,  há um aumento "x" de 500 na quantidade vendida. Então teremos a seguinte função obtida pela lei de formação acima:

f(x) = (18-5x)*(1.000+500x) ------ efetuando o produto indicado, iremos ficar assim:

f(x) = -2.500x² + 4.000x + 18.000 <--- Esta é a função quadrática obtida pela lei de formação acima. Então esta é a função receita do restaurante Exatus.


ii) Agora vamos responder às questões propostas:

ii.a) Qual deve ser o valor do desconto para que a receita semanal seja maximizada?

Veja que o desconto "x" para que haja receita máxima será dada pelo "x" do vértice da parábola da equação acima. E o "x" do vértice (xv) é dado pela seguinte fórmula:

xv = -b/2a ----- substituindo-se "b" por "4.000" e "a" por "-2.500", teremos:

xv = -4.000/2*(-2.500)

xv = -4.000/-5.000 ----- note que, na divisão, menos com menos dá mais. Logo:

xv = 4.000/5.000 ---- simplificando-se tudo por "1.000", ficaremos com:

xv = 4/5 (ou "0,8" , pois 4/5 = 0,8). <--- este é o valor do "x" do vértice, que é "x" que vai proporcionar a obtenção da receita máxima.

Agora basta que substituamos na expressão original o "x" por "0,8" para vermos qual é o desconto (em reais) para a obtenção da receita máxima. Note que a função f(x) é esta:

f(x) = (18 - 5x)*(1.000+500x) ----- tomando-se apenas a primeira parte, para vermos qual será o desconto (em reais) que dá a receita máxima, teremos:

18 - 5x ---- substituindo-se "x" por "0,8", temos: 18 - 5*08 = 18 - 4 = 14<---- Veja: o desconto que dará a receita máxima é de R$ 4,00 , o que faz com que o prato seja vendido por R$ 14,00. Mas a pergunta é apenas desta questão é: qual é o valor do desconto que dará a receita máxima? A resposta é:

R$ 4,00 <--- Esta é a resposta para o item "a".


ii.b) Determine a receita máxima.

Veja, para isso, basta que calculemos o "y" do vértice (yv). Mas há uma outra forma de obter a receita máxima sem ter que utilizar a fórmula do "y" do vértice (yv). Esta outra forma se resume em você substituir na função dada [f(x) = -2.500x² + 4.000x + 18.000] o "x" por "0,8" e o resultado será a receita máxima. Então fazendo isso, teremos:

f(0,8) = -2.500*(0,8)² + 4.000*0,8 + 18.000

f(0.8) = - 2.500*(0,64) + 3.200 + 18.000 ----- veja que "-2.500*0,64 = -1.600". Logo:

f(0,8) = -1.600 + 3.200 + 18.000 ---- efetuando esta soma algébrica, ficaremos com:

f(0,8) = 19.600,00 <--- Esta é a resposta para o item "b". Esta é a receita máxima que foi obtida quando o prato é vendido com um desconto de R$ 4,00.


ii.c) Represente graficamente a função receita descrita acima.

Veja: como aqui no Brainly eu não sei construir gráficos, então veja o gráfico desta função no endereço abaixo e constate tudo o que informamos sobre ela no desenvolvimento acima. Veja lá:

http://www.wolframalpha.com/input/?i=f(x)+%3D+-2500x%C2%B2+%2B+4000x+%2B+18000

Fixe-se no primeiro gráfico que, por ter uma escala maior, fica melhor de ver.


É isso aí.

Deu pra entender bem?

Ok?

Adjemir."

Pronto. A transcrição é que pusemos aí em cima.

OK?

Adjemir.


jonataslaet: Muito bem. O estudante só precisa ter o cuidado que, na equação aqui encontrada pra receita, X não é o desconto, mas sim um valor que, se multiplicado por 5, resulta no desconto. Por exemplo: se quer saber a receita pro desconto de 2 reais, o estudante precisa colocar o valor 0,4 na equação e não o 5; se quer saber a receita pro desconto de 5 reais, o estudante precisa colocar o valor 1 na equação e não o 5. E assim por diante.
adjemir: Perfeito, amigo. Um abraço.
adjemir: Agradecemos à moderadora Camponesa pela aprovação da nossa resposta. Um cordial abraço.
adjemir: E aí, Gui, era isso mesmo o que você estava esperando?
Perguntas interessantes