Um restaurante reservou uma mesa circular de seis lugares numerados para a realização de uma confraternização de seis amigos. Sabendo-se que três deles estão com camisa azul, de quantas maneiras esses amigos podem se sentar à mesa a fim de que os três que estão com camisa azul fiquem juntos?
a) 36
b) 20
c) 216 *****
d) 60
e) 108
Soluções para a tarefa
É possível que os amigos se sentem de 216 maneiras diferentes.
"Estendendo" as cadeiras em linha reta, teremos uma linha com seis cadeiras. Se A representa cada um dos amigos de camisa azul e x os amigos que não estão de azul, temos as seguintes possibilidades para que os três de azul fiquem juntos:
AAAxxx
xAAAxx
xxAAAx
xxxAAA
AxxxAA
AAxxxA
Agora, podemos permutar os amigos nessas posições, dessa forma, no primeiro A de cada possibilidade, teremos três amigos para sentar ali, no segundo A serão 2 e no último será o amigo restante, dessa forma, há 6 possibilidades dos três amigos sentarem em cada uma das possibilidades acima. Devemos levar em consideração também a permutação entre os amigos que não estão vestindo azul, logo:
n = 6.6.6
n = 216
Resposta: C