Um relógio está marcando 15:40, qual o menor algulo entre eles?
Soluções para a tarefa
Respondido por
9
Vamos lá.
Veja, Brenndy, que há uma forma bem prática para encontrar qualquer que seja o ângulo (o maior ou o menor) formado pelos ponteiros de um relógio.
A forma prática é esta:
α = |11min - 60h|/2 , em que "α" é o ângulo formado; "min" é a quantidade de minutos e "h" é a quantidade de horas.
Vamos, então, fazer as devidas substituições. Como são 15h40min, então substituiremos "h" por 15 e "min" por 40. Assim, ficaremos com:
α = |11*40 - 60*15|/2
α = |440 - 900|/2
α = |- 460]/2 ------- agora note que |-460| = 460. Assim:
α = 460/2
α = 230º <--- Esta é a medida do MAIOR ângulo, pois o ângulo que encontramos deu maior do que 180º.
Para saber qual é o MENOR ângulo, então basta subtrair de 360º a medida do ângulo encontrado. Assim, o menor ângulo pedido na sua questão será de:
360º - 230º = 130º <---- Esta é a resposta. Esta é a medida do MENOR ângulo formado entre os ponteiros de um relógio que estiver marcando 15h 40 min.
Agora preste atenção numa coisa importante: se o ângulo que você encontrar pela forma prática acima for menor do que 180º, então você estará encontrando a menor ângulo formado pelos ponteiros; se, no entanto, o ângulo for maior do que 180º, então o ângulo encontrado será o maior ângulo formado pelos ponteiros. Por isso é que chamamos esta forma de "forma prática", pois qualquer que seja o ângulo encontrado você já saberá se é o menor ou é o maior (basta ver se foi menor do que 180º ou maior do que 180º). E qualquer que seja o ângulo encontrado, você poderá saber qual é a medida do outro ângulo, bastando, para isso, subtrair de 360º a medida do ângulo encontrado.
Deu pra entender bem?
Ok?
Adjemir.
Veja, Brenndy, que há uma forma bem prática para encontrar qualquer que seja o ângulo (o maior ou o menor) formado pelos ponteiros de um relógio.
A forma prática é esta:
α = |11min - 60h|/2 , em que "α" é o ângulo formado; "min" é a quantidade de minutos e "h" é a quantidade de horas.
Vamos, então, fazer as devidas substituições. Como são 15h40min, então substituiremos "h" por 15 e "min" por 40. Assim, ficaremos com:
α = |11*40 - 60*15|/2
α = |440 - 900|/2
α = |- 460]/2 ------- agora note que |-460| = 460. Assim:
α = 460/2
α = 230º <--- Esta é a medida do MAIOR ângulo, pois o ângulo que encontramos deu maior do que 180º.
Para saber qual é o MENOR ângulo, então basta subtrair de 360º a medida do ângulo encontrado. Assim, o menor ângulo pedido na sua questão será de:
360º - 230º = 130º <---- Esta é a resposta. Esta é a medida do MENOR ângulo formado entre os ponteiros de um relógio que estiver marcando 15h 40 min.
Agora preste atenção numa coisa importante: se o ângulo que você encontrar pela forma prática acima for menor do que 180º, então você estará encontrando a menor ângulo formado pelos ponteiros; se, no entanto, o ângulo for maior do que 180º, então o ângulo encontrado será o maior ângulo formado pelos ponteiros. Por isso é que chamamos esta forma de "forma prática", pois qualquer que seja o ângulo encontrado você já saberá se é o menor ou é o maior (basta ver se foi menor do que 180º ou maior do que 180º). E qualquer que seja o ângulo encontrado, você poderá saber qual é a medida do outro ângulo, bastando, para isso, subtrair de 360º a medida do ângulo encontrado.
Deu pra entender bem?
Ok?
Adjemir.
Perguntas interessantes