Matemática, perguntado por arthurseabs904, 4 meses atrás

Um quadrado está inscrito em uma circunferência de raio igual a 10 cm. A medida de seu lado é igual a
(Considerev2 = 1.4)
12 cm.
O 14 cm.
16 cm.
18 cm.
20 cm.


guidaumann: o que vc quer saber?

Soluções para a tarefa

Respondido por solkarped
12

✅ Após ter resolvido os cálculos, concluímos que a medida do lado do referido quadrado é:

           \large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf L = 14\:cm\:\:\:}} \end{gathered}$}

Se o referido quadrado está inscrito na circunferência, então significa dizer que os vértices do referido quadrado são pontos da circunferência.

Além disso, sabemos também que as diagonais do quadrado se cruzam perpendicularmente. Então, podemos aplicar o teorema de Pitágoras para calcular a medida de seu lado.

Então temos:

           \large\displaystyle\text{$\begin{gathered}L^{2} = r^{2} + r^{2} \end{gathered}$}

           \large\displaystyle\text{$\begin{gathered}L^{2} = 2r^{2} \end{gathered}$}

             \large\displaystyle\text{$\begin{gathered}L = \sqrt{2r^{2}} \end{gathered}$}

              \large\displaystyle\text{$\begin{gathered}L = r\sqrt{2} \end{gathered}$}

Se:

             \large\begin{cases}r = 10\:cm\\\sqrt{2} = 1,4 \end{cases}

Então, temos:

           \large\displaystyle\text{$\begin{gathered}L = 10\cdot1,4 = 14\:cm \end{gathered}$}

✅ Portanto, a medida do lado é:

                   \large\displaystyle\text{$\begin{gathered}L = 14\:cm \end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/49557141
  2. https://brainly.com.br/tarefa/49656359
  3. https://brainly.com.br/tarefa/49051362
  4. https://brainly.com.br/tarefa/50693883
  5. https://brainly.com.br/tarefa/50842748
  6. https://brainly.com.br/tarefa/49804267
  7. https://brainly.com.br/tarefa/50871159

Solução gráfica:

Anexos:

solkarped: Bons estudos!!! Boa sorte!!!
rheamaesalinas: haha
rheamaesalinas: haha
Respondido por guidaumann
8

Explicação passo-a-passo:

l²=r²+r²

l²=2r²

l=√2r²

r=10cm

√2=1,4

l=10.1,4=14

Perguntas interessantes