Um quadrado ABCD foi dividido em 5 retângulos congruentes de cor cinza e 5 retângulos congruentes de cor branca, conforme mostra a figura. As bases menores desses 10 retângulos têm a mesma medida, e a diferença entre a base maior de um retângulo cinza e a base maior de um retângulo branco é 14 cm. O perímetro de um retângulo de cor cinza é:
a) 156 cm b) 98 cm c) 126 cm d) 112 cm e) 140 cm
Soluções para a tarefa
Passo a passo: pelo desenho percebe-se que o lado AB do quadrado é formado pelos lados menores dos retângulos e como cada lado vale X. Logo cada lado do quadrado mede 5x.
Já o lado AD é formado por 2 lados menores do retângulo, 2X e mais o Lado maior do retangulo cinza. Logo se o lado AD todo vale 5x temos que 5x-2x =3x. Ou seja, o lado maior do retangulo cinza vale 3X.
Pelo lado BC temos que o lado maior dos dois retângulos somados vale 5X, que é igual ao lado do quadrado ABCD.
E se o maior lado do retangulo cinza vale 3x. Então o maior lado do retângulo branco vale 2x.
Pelo Enunciado temos que o maior lado do retângulo cinza menos o maior lado do retângulo branco vale 14 cm. Logo:
3X-2X=14
X=14
O perímetro do retangulo maior cinza vale X+X+3X+3X= 8X
Com X vale 14 temos:
8 vezes 14 que é igual a 112 cm.
Letra D
Resposta:
112cm letra D