Matemática, perguntado por ayandratavares9670, 1 ano atrás

Um problema típico do Cálculo é a determinação da equação da reta tangente a uma função dada. Assim, determine a equação da reta tangente à função y = x2 + 1, no ponto onde x = 1.? me ajudeeem por favor!

Soluções para a tarefa

Respondido por Usuário anônimo
1
x=1   ==>y=x²+1=1²+1=2

Ponto de tangência (1,2)

y=x²+1

dy/dx=2x   ==>x=1 ==>coef. angular=2*1=2  é o coeficiente angular da reta

2=(y-2)/(x-1)  ==>2x-2=y-2  ==>2x-y=0 é a resposta
Anexos:
Respondido por solkarped
1

✅ Após resolver os cálculos, concluímos que a reta tangente a função pelo ponto de tangencia é:

                         \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf t: y = 2x\:\:\:}}\end{gathered}$}

Sejam os dados:

                              \Large\begin{cases} y = x^{2} + 1\\x = 1\end{cases}

Para montar a equação da reta tangente devemos utilizar a fórmula "ponto/declividade", ou seja:

\Large\displaystyle\text{$\begin{gathered} \bf(I)\end{gathered}$}                \Large\displaystyle\text{$\begin{gathered} y - y_{T} = m_{t}\cdot(x - x_{T})\end{gathered}$}

Se o valor da ordenada do ponto "T" é:

\Large\displaystyle\text{$\begin{gathered} \bf(II)\end{gathered}$}                          \Large\displaystyle\text{$\begin{gathered} y_{T} = f(x_{T})\end{gathered}$}

E o coeficiente angular da reta tangente é a derivada primeira da função em termos de "x", ou seja:

\Large\displaystyle\text{$\begin{gathered} \bf(III)\end{gathered}$}                       \Large\displaystyle\text{$\begin{gathered} m_{t} = f'(x_{T})\end{gathered}$}

Substituindo as equações "II" e "III" em "I", temos:

\Large\displaystyle\text{$\begin{gathered} \bf(IV)\end{gathered}$}       \Large\displaystyle\text{$\begin{gathered} y - f(x_{T}) = f'(x_{T})\cdot(x - x_{T})\end{gathered}$}

Substituindo os dados na equação "IV" e desenvolvendo os cálculos, temos:

               \Large\displaystyle\text{$\begin{gathered} y - (1^{2} + 1) = \left[2\cdot1^{1} + 0\right]\cdot(x - 1)\end{gathered}$}

                 \Large\displaystyle\text{$\begin{gathered} y - (1 + 1) = \left[2\cdot1\right]\cdot(x - 1)\end{gathered}$}

                              \Large\displaystyle\text{$\begin{gathered} y - 2 = 2\cdot(x - 1)\end{gathered}$}

                              \Large\displaystyle\text{$\begin{gathered} y - 2 = 2x - 2\end{gathered}$}

                                       \Large\displaystyle\text{$\begin{gathered} y = 2x - 2 + 2 \end{gathered}$}

                                       \Large\displaystyle\text{$\begin{gathered} y = 2x\end{gathered}$}

✅ Portanto, a reta tangente é:

                                    \Large\displaystyle\text{$\begin{gathered} t: y = 2x\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/40839663
  2. https://brainly.com.br/tarefa/51075132
  3. https://brainly.com.br/tarefa/39939095
  4. https://brainly.com.br/tarefa/144003
  5. https://brainly.com.br/tarefa/19960340
  6. https://brainly.com.br/tarefa/16699576
  7. https://brainly.com.br/tarefa/38258843
  8. https://brainly.com.br/tarefa/7189134
  9. https://brainly.com.br/tarefa/35233421
  10. https://brainly.com.br/tarefa/11953305
  11. https://brainly.com.br/tarefa/12211484
  12. https://brainly.com.br/tarefa/11783524

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas interessantes