Física, perguntado por pedrohenrique0017, 7 meses atrás

Um ponto material movimenta-se sobre uma trajetória retelinea obedecendo a função horária s = 40 + 8.t(no SI). determine
A) sua posição inicial;
B) sua posição no instante 3 s;
C) o instante em que o ponto material passa pela posição 120 m;
D)o deslocamento escalar do móvel entre os instantes 1s e 5s.

Soluções para a tarefa

Respondido por GeBEfte
3

A função horária da posição dada no enunciado é de 1º grau, ou seja, o maior expoente de "t" vale 1 e, portanto, podemos afirmar que o movimento desse objeto é uniforme (MRU).

No MRU, a função horária da posição é dada por:

\boxed{ \sf S~=~S_o~+~v\cdot t}\\\\Onde:~~~\left\{\begin{array}{ccl}\sf S&:&\sf Posicao~no~instante~t\\\sf S_o&:&\sf Posicao~inicial\\\sf v&:&\sf Velocidade\\\sf t&:&\sf Tempo\end{array}\right.

a)

Como podemos ver no modelo mostrado acima, a posição inicial (So) é o coeficiente linear da função horária da posição, ou seja, o termo independente de "t".

Na função dada pelo exercício, esse termo é representado por 40, logo:

\boxed{\sf S_o~=~40~m}

b)

Substituindo "t" na função por 3, teremos:

\sf S~=~40~+~8\cdot 3\\\\S~=~40~+~24\\\\\boxed{\sf S~=~64~m}

c)

Substituindo agora a posição no instante t por 120:

\sf 120~=~40~+~8\cdot t\\\\120-40~=~8t\\\\8t~=~80\\\\t~=~\dfrac{80}{8}\\\\\boxed{\sf t~=~10~s}

d)

O deslocamento é dado pela variação da posição do móvel, logo:

\sf \boxed{\sf d~=~\Delta S~=~S_2-S_1}

Obs.: Como o movimento é retilíneo e uniforme, o deslocamento será igual à distancia percorrida pelo móvel.

Vamos então calcular as posições desse móvel nos instantes t=1s e t=5s:

\sf S(1)~=~40+8\cdot 1\\\\S(1)~=~40+8\\\\\boxed{\sf S(1)~=~48~m}\\\\\\\sf S(5)~=~40+8\cdot 5\\\\S(5)~=~40+40\\\\\boxed{\sf S(5)~=~80~m}

Podemos agora calcular a variação da posição (deslocamento):

\sf d~=~S(5)-S(1)\\\\\sf d~=~80-48\\\\\boxed{\sf d~=~32~m}

\Huge{\begin{array}{c}\Delta \tt{\!\!\!\!\!\!\,\,o}\!\!\!\!\!\!\!\!\:\,\perp\end{array}}Qualquer~d\acute{u}vida,~deixe~ um~coment\acute{a}rio

Perguntas interessantes