um polígono regular com exatamente 35 diagonais tem:
Soluções para a tarefa
Respondido por
54
Vou deduzir que esteja sendo pedido o número de lados (ou vértices) do polígono regular.
A fórmula de número de diagonais para um polígono com n lados é:
Portanto, sabemos que para tal polígono:
Podemos resolver isso através de uma equação quadrática.
Desconsideramos a solução negativa pois um polígono não pode ter um número negativo de lados.
Portanto, o polígono tem 10 lados ou vértices.
Espero ter ajudado.
A fórmula de número de diagonais para um polígono com n lados é:
Portanto, sabemos que para tal polígono:
Podemos resolver isso através de uma equação quadrática.
Desconsideramos a solução negativa pois um polígono não pode ter um número negativo de lados.
Portanto, o polígono tem 10 lados ou vértices.
Espero ter ajudado.
Respondido por
39
Boa noite Beatriz
d = n*(n - 3)/2
35 = n*(n - 3)/2
n² - 3n - 70 = 0
d² = 9 + 280 = 289
d = 17
n = (3 + 17)/2 = 20/2 = 10 lados
d = n*(n - 3)/2
35 = n*(n - 3)/2
n² - 3n - 70 = 0
d² = 9 + 280 = 289
d = 17
n = (3 + 17)/2 = 20/2 = 10 lados
Perguntas interessantes