um polígono regular apresenta 20 diagonais. O ângulo externo desse poligono
mede
Soluções para a tarefa
Respondido por
3
a soma dos ângulos externos é 360 graus.
cada vértice tem seu ângulo externo, então 360/20 = 18 graus
eu posso dividir pelo número de lados apenas quando for polígono regular, pois os ângulos externos vão ser todos iguais.
cada vértice tem seu ângulo externo, então 360/20 = 18 graus
eu posso dividir pelo número de lados apenas quando for polígono regular, pois os ângulos externos vão ser todos iguais.
Respondido por
10
numero de diagonais
d = n(n-3) / 2
20 = n(n-3)/2
40= n^2 - 3n
n^2- 3n - 40 = 0
fatorando o polinomio temos
(n-8) (n+5)=0
n= 8 ou n = - 5
como n é positivo o poligono é o octogóno
n= 8
como é regular vale
e = 360/ n
formula do angulo externo para poligonos regulares
e = 360 / 8
e = 45*
abraço
Perguntas interessantes
Sociologia,
9 meses atrás
Inglês,
9 meses atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás